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The process to identify wear particles concerns a variety of parameters, some of which may be
redundant, and influences the efficiency of computer image analysis. In order to improve the accuracy
and speed of debris identification, this paper proposes a new algorithm that combines principal
component analysis and grey relational analysis (CPGA). First, principal component analysis is used to
optimise the characteristic parameters of wear particles. Then, an improved grey relational analysis is
used to discriminate between similar types of wear particles, such as severe sliding and fatigue particles.
The experimental results indicate that the CPGA algorithm can successfully solve the information
redundancy problem resulting from multiple parameters and proves to be a practical method to identify
wear particles quickly and accurately.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Wear debris from lubricating systems contains detailed and
important information about the wear conditions in machines.
Presently, oil and debris analysis are still very useful in wear
condition monitoring and failure diagnosis in the aerospace
industry, mining industry, and even medical fields [1].

Analytical ferrography is used to isolate ferrous debris from
lubricant and deposit them on a glass substrate for further analysis
using a gradient magnetic field. The advantages to this technique
are that debris information including colour, shape, texture,
composition, and size distribution can be obtained [2]. This
technique is particularly efficient for examining large particles,
which is extremely important for monitoring the condition of jet
engines [1] and transmissions [3].

Wear particles are the direct consequence of wear processes
and their features reflect the wear modes, mechanisms, and
severity associated with their generation. The quantity of the
debris shows the extent and rate-of-wear progression. The size
and size distribution relate to the severity of the wear. Broadly
speaking, the size of normal wear particles is less than 15 μm or
less than 25 μm for machines used in mining. Furthermore, if the
wear mechanisms and specific wear locations need to be deter-
mined, a visual inspection of the morphological characteristics
such as the shape, colour and texture of wear debris is important
[4]. For example, when examining wear particles from severe
ll rights reserved.
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sliding, cutting, and fatigue, it is critical to find signs of abnormal
wear such as adhesive, abrasive and fatigue wear.

Shape characteristics or out-line profiles of the wear particles
are important features that can be exploited to identify particles
related to on-going wear processes. Some basic shape factors have
been proposed for wear particle characterisation [4].

The colour of particles is one important feature that describes
both particle materials and the condition of their generation. In
one paper [5], an identification method for metallic wear debris
using their colour features is presented.

The surface texture shows traces of friction processes and to a
certain extent can explain the mechanism behind the type of wear.
A statistical approach using co-occurrence matrices is used to
describe the texture. The texture parameters capture some of its
characteristics, such as homogeneity, coarseness and periodicity.

Much effort has been dedicated to developing a computer-
aided image analysis system to reduce reliance on professional and
technical personnel and improve the accuracy and efficiency of
wear particle identification processes [2,6–11]. However, no matter
which means are adopted, it is necessary to decide how many and
which parameters should be investigated to ensure an accurate
identification of the type of wear debris, and then accordingly to
before selecting the most appropriate method for performing an
analysis on the debris in question.

In total, there are more than 200 parameters that have been
defined to describe appropriate characteristics to distinguish
between different types of wear particles. There are many irrele-
vant features and much redundant information if the wear particle
identification process includes a variety of parameters, which have
differing levels of significance on wear particle identification. On
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the other hand, it is difficult to classify particles using a single
parameter, and for different type of particles, the critical para-
meters are different. For example, rubbing, cutting and spherical
particles have well distinguished boundary morphologies, which
include size distributions and shape profile features. Therefore,
area, length, roundness and fibre ratio have been chosen for their
identification. Roundness is a criterion used for describing a round
contour on a spherical particle. The fibre ratio is used to distin-
guish cutting particles from the other types. After spherical and
cutting particles are separated, rubbing particles are easily distin-
guished from fatigue and severe sliding particles using area and
length characteristics because rubbing particles have a much
smaller size distribution than fatigue and severe sliding wear
particles.

Fatigue and severe sliding wear particles have more compli-
cated boundary morphology and surface structure. Their identifi-
cation is difficult because of the large number of parameters, some
of which are related to each other and some of which are
redundant. The two particles shown in Fig. 1 have similar size,
shape and outline features, but one of them is a severe sliding
particle and the other may be a fatigue particle. The shape and
profiles of the particles in Fig. 2 are different, but they are both
fatigue particles.

Stachowiak and Peng et al. indicate that a texture-based
classification system is a more efficient and accurate way of
distinguishing various wear particles than one based on size and
shape [12,13]. Therefore, 3D wear particle morphology based on
SEM imaging and laser confocal microscopy images are used for
wear particle identification [14].
Fig. 1. (a) A severe sliding wear particle (b) a fatigue wear particle.
In order to distinguish between particles that have many
similarities, pattern recognition methods have been applied to
wear particle analysis. Peng and Kirk utilise grey system theory to
perform relational analysis and decision making [15]. This method
provides the possibility to identify laminar and severe sliding
particles and greatly automate the wear particle identification
process. However, the analysis process is still complicated, and the
relational grades of different particles, such as fatigue and severe
sliding particles, are not substantially different [15].

Neural networks have also been applied to classify wear debris
[10,16–19]. However, the application of neural networks is limited
by internal problems, such as a large number of simulations, long
training time requirements and a lack of system transparency.
Furthermore, most of the proposed systems are not finalised prior
to practical implementation, and some of them are developed
using 3D image analysis, which is difficult to obtain in most fields.

Therefore, we try to deal with multiple parameters and
problem of uncertainty to improve the classification quality of
wear particles in this paper. Principal component analysis is used
to reduce parameter dimensionality and optimise the combination
of various characteristic parameters. Grey relational analysis is
used to objectively identify the corresponding types of wear
particles.
2. Analysis method

In order to improve the accuracy and speed of debris identifi-
cation, a new algorithm that combines principal component
analysis and grey relational analysis (CPGA) is proposed in this
paper. As shown in Fig. 3, principal component analysis is first
Fig. 2. Two different fatigue wear particles.
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Fig. 3. Schematic flowchart of the CPGA process.
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used to solve the information redundancy problem resulting from
the use of multiple parameters. Then, in order to reduce the
misidentification of wear particles, grey relational analysis is used
to distinguish between different types of wear particles.
2.1. Principal component analysis (PCA)

In order to reduce the redundancy associated with multiple
parameters in the particle identification process, principal compo-
nent analysis (PCA) is used to construct the principal components
that provide the most significant contribution to identifying
certain types of wear particles.

PCA has gradually evolved into an analytical tool for the
optimisation of a system with multiple performance characteris-
tics [20–24]. Its main advantage is significantly alleviating the load
and complexity of the information by simplifying several corre-
lated variables into fewer uncorrelated and independent principal
components, thus preserving as much original information as
possible by using linear combinations. In this study, PCA is applied
to compress and classify the wear particle multiple parameters.
The PCA procedure is described as follows [20,21]:
(1)
 An original multiple wear particle characteristic array is
defined as

X ¼

x1ð1Þ x1ð2Þ ⋯ x1ðnÞ
x2ð1Þ x2ð2Þ x2ðnÞ
⋮ ⋮

xmð1Þ xmð2Þ ⋯ xmðnÞ

2
66664

3
77775; i¼ 1;2;⋯;m; j¼ 1;2;⋯;n;

where m is the number of particles, n is the number of the
characteristic parameters, and xi(j) is the jth characteristic
parameter of ith particle, such as the major axis length, fibre
ratio, energy, and entropy.
(2)
 The corresponding correlation coefficient array is calculated as

Rjl ¼
CovðxiðjÞ; xiðlÞÞ
sxi ðjÞsxi ðlÞ

� �
; j¼ 1;2;⋯;n; l¼ 1;2;⋯;n; ð1Þ

where Cov(xi(j), xi(l)) is the covariance of sequences xiðjÞ and
xiðlÞ, sxi ðjÞ is the standard deviation of sequence xiðjÞ and sxi ðlÞ
is the standard deviation of sequence xiðlÞ.
(3)
 The eigenvalues and eigenvectors are determined from the
correlation coefficient array:

R−λkImð ÞVik ¼ 0; ð2Þ
where the eigenvalue: λkðk¼ 1;2;⋯;nÞ; λ1≥λ2≥⋯≥λn≥0 and
eigenvectors Vik ¼ ½αk1αk1⋯αkn�T correspond to the eigenvalue λK .
(4)
 The contribution rate of each component is determined by

ak ¼
λk

∑
n

j ¼ 1
λj

ðk¼ 1;2;⋯;nÞ ; ð3Þ

AB¼ ∑
m

k ¼ 1
ak; ð4Þ
where ak is the contribution rate of each component and AB is
cumulative contribution rate.
(5)
 Lastly, the principal components are obtained from

Zmk ¼ ∑
n

i ¼ 1
xmðiÞ⋅Vik; ð5Þ

where Zm1 is the first principal component, Zm2 is the second
principal component, etc. The principal components are
aligned in descending order with respect to the contribution
rate. Therefore, the first principal component Zm1 accounts for
most of the contribution rate in the data.
2.2. Grey relational analysis

Grey system theory has proven to be useful for dealing with
problems involving poor, insufficient, and uncertain information,
such as wear mode recognition [25,26]. The grey relational
analysis based on this theory can be further adopted to solve the
complicated interrelationships among the designated characteris-
tics. Through this analysis, a grey relational grade is defined and
used as an indicator for wear particle classification.

Severe sliding and fatigue particles have similarities that are
difficult to distinguish using conventional methods. Therefore, in
this paper, we focus mainly on distinguishing between severe
sliding and fatigue particles.

The known reference sequence for two types of wear particles
are represented as X0 ¼ ðx01; x02Þ, where x0jðkÞ is the kth character-
istic parameter of x0jðj¼ 1;2Þ. The variable X0 can be represented as

X0 ¼
x01ð1Þ x01ð2Þ ⋯ x01ðnÞ
x02ð1Þ x02ð2Þ ⋯ x02ðnÞ

" #
: j¼ 1; Severe sliding particle

j¼ 2; Fatigue particle

Suppose that any unidentified test particles are represented as
follows:

X ¼

x1ð1Þ x1ð2Þ ⋯ x1ðnÞ
x2ð1Þ x2ð2Þ x2ðnÞ
⋮ ⋮

xmð1Þ xmð2Þ ⋯ xmðnÞ

2
66664

3
77775;

where xi(j) is the jth characteristic parameter of the ith particle, m
is the number of particles and n is the number of characteristic
parameters.
2.2.1. Grey relational generation
Wear particle parameters have different physical significances

and units, resulting in different dimensions and magnitudes of
data. Therefore, normalisation is needed prior to beginning a grey
relational analysis. The disordered raw data can be transferred to a
dimensionless sequence for grey analysis, also known as grey
relational generation.

The linear data pre-processing method for the particle char-
acteristics is expressed as

xni ðkÞ ¼ xiðkÞ=xojðkÞ; i¼ 1;2;⋯;m; k¼ 1;2;⋯;n; j¼ 1;2; ð6Þ

where xni ðkÞ is the sequence after normalisation, xiðkÞ is the original
sequence of particle characteristics, x0jðkÞ is the reference
sequence of particles characteristics, m is the number of particles
and n is the number of the characteristic parameters.
2.2.2. Grey relational coefficient and grey relational grade
A grey relational coefficient is calculated after grey relational

generation [27]. The grey relational coefficient for an unknown



Fig. 4. The flowchart for the CPGA.

J. Wang, X. Wang / Wear 304 (2013) 96–102 99
particle xi of the type x0j is defined as follows:

γðx0jðkÞ; xiðkÞÞ ¼
Δmin þ ξΔmax

Δ0iðkÞ þ ξΔmax
; 0oγðx0jðkÞ; xiðkÞÞ≤1; ð7Þ

where Δ0iðkÞ is the deviation sequence of the reference sequence
and the test sequence

Δ0iðkÞ ¼ jx0jðkÞ−xiðkÞj;
Δmin ¼min

i
min

k
jx0jðkÞ−xiðkÞj;Δmax ¼max

i
max

k
jx0jðkÞ−xiðkÞj;

where ξ is the distinguishing coefficient, which is defined as
0oξo1, and is set at 0.5 in this study.

The purpose of defining the distinguishing coefficient is to
show the relational degree between the reference sequence x0jðkÞ
and the test sequences xiðkÞ, where i¼ 1;2;⋯;m, k¼ 1;2;⋯;n and
j¼ 1;2.

The grey relational grade is a weighting-sum of the grey
relational coefficients and is defined as follows:

γðx0j;xiÞ ¼ ∑
n

k ¼ 1
βkγðx0jðkÞ; xiðkÞÞ; ð8Þ

where βk represents the weighting value of the kth performance
characteristic, and ∑n

k ¼ 1βk ¼ 1. In this study, the corresponding
weighting values are obtained from the principal component
analysis.

Therefore, the grey relational grade, which represents the
discriminatory relational level between the test sequence and
the reference sequence, can be obtained.

The largest value among γðx0j; xiÞðj¼ 1;2Þ means the test parti-
cle is more similar to the jth type. For example, γðx02; xiÞ means
that the test particle xi is more similar to the second type, the
fatigue particle in this study. Therefore, the conclusion is that xi
may be classified as a fatigue particle or at least that xi is more
likely to be a fatigue particle than a severe sliding wear particle.

2.3. CPGA analysis

As described, severe sliding and fatigue particles have certain
similarities that make it difficult to distinguish between them by
conventional methods.

Fatigue and severe sliding wear particles have complicated
profile morphologies and surface structures. Due to the severe
sliding wear mechanism, parallel scratches or grooves often
appear on the surfaces of wear particles. Fatigue particle often
have a relative homogeneous surface. Therefore, texture para-
meters are crucial for discriminating between severe sliding and
fatigue particles.

In this study, a statistical approach based on the grey level co-
occurrence matrices (GLCM) is used to describe the texture of
wear particles. The GLCM of an image is an estimate of the second-
order joint probability, Pδ (i, j), of the intensity values of two pixels
(i and j), a distance δ apart along a given direction θ, and describes
the probability that i and j have the same intensity. This joint
probability takes the form of a square array Pδ, with row and
column dimensions equal to the number of discrete grey levels
(intensities) in the image being examined.

For each wear particle, four co-occurrence matrices are com-
puted with each matrix corresponding to one of the four direc-
tions, θ¼01, 451, 901, and 1351, between a pair of adjacent pixels.

In this paper, four of the most commonly used descriptors
(energy, contrast, correlation, and entropy) calculated from Pδ are
used to extract textural features from the wear particle image data
set [28]. These descriptors are described by [29]

Energy : f 1 ¼ ∑
L−1

i ¼ 0
∑
L−1

i ¼ 0

_p2
δ ði; jÞ; ð9Þ
Contrast : f 2 ¼ ∑
L−1

n ¼ 0
n2 ∑

L−1

i ¼ 0
∑
L−1

j ¼ 0

_pδði; jÞ
( )

; ð10Þ

Correlation : f 3 ¼
∑L−1

i ¼ 0∑
L−1
j ¼ 0ij

_pδði; jÞ−μ1μ2
s21s

2
2

; ð11Þ

where the means and variances in the x and y directions are given
by

μ1 ¼ ∑
L−1

i ¼ 0
i ∑
L−1

j ¼ 0

_pδði; jÞ; s21 ¼ ∑
L−1

i ¼ 0
ði−μ1Þ2 ∑

L−1

j ¼ 0

_pδði; jÞ; ð12Þ

μ2 ¼ ∑
L−1

j ¼ 0
j ∑
L−1

i ¼ 0

_pδði; jÞ; s22 ¼ ∑
L−1

j ¼ 0
ðj−μ2Þ2 ∑

L−1

i ¼ 0

_pδði; jÞ: ð13Þ

Entropy : f 4 ¼− ∑
L−1

i ¼ 0
∑
L−1

j ¼ 0

_pδði; jÞlog_pδði; jÞ: ð14Þ

A total of 16 parameters can be used to describe the texture of a
particle. Because it is difficult to identify the particle using so
many parameters, these parameters need to be optimised.

The step-by-step algorithm to combine the principal compo-
nent analysis and the grey relational analysis (CPGA) for identifi-
cation of wear particles is described as follows:
(1)
 Construct the array of texture parameters.

(2)
 Obtain the principal components of the texture of a wear

particle using principal component analysis.
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Select the principal components for those the cumulative
contribution rate is greater than the pre-set threshold value.
(4)
 Construct a new array using these principal components and
shape parameters.
As described by Stachowiak [30], using only the PCA with
surface texture parameters may not be sufficient to distinguish
between fatigue and severe sliding particles. Therefore, shape
parameters (such as the major axis length and fibre ratio) are
also included in this array.
(5)
 Process the grey relational generation for use in the grey
analysis.
Fig. 5. Examples of wear partic

e 1
ce texture parameters of wear particles.

rface texture Energy Contrast

rection 01 451 901 1351 01 451
ference severe sliding particle 0.85 0.85 0.85 0.77 6.71 7.48
ference fatigue particle 0.94 0.80 0.94 0.80 0.86 1.04
ear particle 1 0.74 0.74 0.74 0.74 6.51 11.41
(6)
les ex

901
6.61
0.80
4.36
Calculate the corresponding grey relational grade.
The flowchart of CPGA analysis method is shown in Fig. 4.
3. Test examples

The aim of this work is to classify particles based mainly on
their surface texture and shape parameters using the CPGA. More
than 60 wear particles taken from mining and petrochemical
equipments are examined in this study. The images were obtained
amined in this study.

Correlation Entropy

1351 01 451 901 1351 01 451 901 1351
9.88 0.05 0.05 0.05 0.05 059 0.59 0.59 0.54
1.19 0.10 0.39 0.10 0.33 0.22 0.25 0.24 0.20
0.03 0.03 0.03 0.03 0.03 1.11 1.16 1.08 1.13



Table 4
The relational grade of the severe sliding and fatigue test particles shown in Fig. 5.

Examples Severe sliding Fatigue Identification result

Particle 1 0.86 0.46 Severe sliding
Particle 2 0.90 0.48 Severe sliding
Particle 3 0.95 0.47 Severe sliding
Particle 4 0.44 0.75 Fatigue
Particle 5 0.39 0.88 Fatigue
Particle 6 0.40 0.92 Fatigue
Particle 7 0.59 0.56 Severe sliding
Particle 8 0.90 0.47 Severe sliding
Particle 9 0.64 0.54 Severe sliding
Particle 10 0.36 0.95 Fatigue
Particle 11 0.41 0.83 Fatigue
Particle 12 0.38 0.92 Fatigue
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by a digital camera through a ferrograph microscope. Fig. 5 shows
12 example test particles. All the images have the same dimension
setting to 600�600.

Typical severe sliding and fatigue particles are selected as
references. Examples of surface texture parameters of the
reference particles and test wear particles are shown in
Table 1.

The principal component analysis is applied to the test wear
particles. Four direction texture parameters for energy, con-
trast, correlation and entropy are analysed. The contribution
and cumulative contribution rates of each principal compo-
nent are obtained and displayed in descending order in
Table 2.

The contribution rate of the first principal component is
approximately 74%, and the contribution rate of the second
principal component is approximately 14%. Because the cumula-
tive contribution rate of the first three principal components is
larger than 95%, the three texture principal components are
obtained, as shown in Table 3. Then, shape parameters such as
the major axis length and the fibre ratio are added to construct a
new wear particle parameter array.

The identification results of the wear particles shown in Fig. 5
using the grey relational analysis are displayed in Table 4.

In most cases, the differences between the two relational
grades are large enough to classify the particle to its corre-
sponding type. For particle 7 displayed in Table 4, the relational
grade is 0.59 for severe sliding and 0.56 for fatigue. These are
the closest values in Table 4. In reality, this particle has
combined features relating to both a fatigue and a severe sliding
particle. The surface texture is not immediately clear and the
shape is similar to that of a fatigue particle. This type of particle
may be produced by combining rolling and sliding wear in a
machine. Another reason for the ambiguity may be the com-
plexities associated with the morphologies of fatigue and severe
sliding wear particles.

Hence, the proposed method, which combines principal com-
ponent analysis and grey relational analysis (CPGA), is capable of
Table 2
The eigenvalues and contribution rates for the principal components.

Principal
component

Eigenvalue Contribution
rate (%)

Cumulative
contribution rate (%)

First 11.74 73.4 73.4
Second 2.14 13.4 86.8
Third 1.34 8.4 95.2

Table 3
Parameters of wear particles.

Types Texture principal parameters Shape parameters

1st pc 2nd pc 3rd pc Major axis length (μm) Fibre ratio

Particle 1 7.51 −5.48 −11.70 68 1.79
Particle 2 6.59 −5.64 −11.49 45 1.61
Particle 3 7.04 −5.56 −11.45 59 1.46
Particle 4 1.71 −2.25 −3.74 74 1.61
Particle 5 0.71 −1.90 −2.86 35 1.23
Particle 6 0.45 −1.59 −2.16 51 1.27
Particle 7 4.38 −3.16 −6.51 47 1.15
Particle 8 7.09 −3.52 −8.57 73 1.47
Particle 9 4.96 −3.79 −7.72 45 1.25
Particle 10 −0.17 −1.07 −1.17 30 1.08
Particle 11 1.03 −2.05 −3.23 48 2.45
Particle 12 0.49 −1.59 −2.42 30 1.27
distinguishing between severe sliding particles and fatigue
particles.

It should be noted that this identification process depends on
the reference particle and that wear particles may appear differ-
ently for different types of equipment. Therefore, to ensure the
accurate identification result, the reference particle needs to be
carefully selected to match to the type of equipment and
application.
4. Conclusions

This study demonstrates that principal component analysis
combined with grey relational analysis can be used for an
objective wear particle identification process. The principal com-
ponent analysis, used to determine the principal surface texture
components prior to the grey relational analysis, is capable of
solving the information redundancy problem caused by multiple
parameters. The grey relational analysis grade is a simple mechan-
ism to provide objective decision making based on the principal
components. As a result, the correct discrimination between the
most similar particles, severe sliding and fatigue wear particles, is
obtained from this algorithm.

This algorithm can be used for an intelligent automated
decision making system to reduce the necessity of human experi-
ence and judgment in ferrography analyses.
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