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a b s t r a c t

Ferrography is a notably useful means to determine the wear condition of machines. Before attempting to
extract the feature parameters of wear particles for identification and analysis, it is necessary to separate
wear particles in ferrograph images. Hence, wear particle segmentation is a critical first step for
intelligent ferrography based on computer image analysis. This paper presents a new method for the
segmentation of wear particles by combining watershed and an improved ant colony clustering
algorithm. The experimental results have demonstrated the possibility of achieving accurate segmenta-
tion of wear particles, including large abnormal wear particles and deposited chains.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ferrography was developed in the 1970s as a technology for
monitoring wear condition and diagnosing failure. Ferrography
determines the wear status and wear mechanisms of equipment
through quantitative and qualitative analysis of the quantity, size,
shape, color and surface texture of wear particles in a lubrication
system. Ferrography is particularly efficient for examining large
particles, which is extremely important for monitoring the condi-
tions of, for instance, jet engines [1], transmissions [2,3] and
mining equipment.

The problem with currently employed ferrography techniques is
that the particle morphology assessment, particle classification and
the machine status evaluation rely on human expertise, which is
time-consuming, costly and not always reliable [4]. During the last
three decades, considerable efforts have been made in the application
of image processing techniques for feature extraction and wear
particle recognition to improve the efficiency and accuracy of
ferrography analysis [5–12]. Analysis systems based on human-
computer interaction, such as the CAVE, CASPA, SYCLOPS [13], as well
as expert systems based on 3D particle-analysis [14] and automatic
particle-identification systems [15], have been developed.

However, because the wear particles are deposited onto the
glass substrate by a magnetic field, the ferro-particles often
deposit in the form of chains, which may be composed of a

number of fine abrasive particles or may contain a number of
large abnormal wear particles, which are generated from abnor-
mal wear, usually larger than 15 μm. As shown in Fig. 1, the
particles may be connected and even overlapped, depending on
the concentration. In addition, the random, complex morphology
(shape, color, surface texture), and blur edges of wear particles
may also lead to difficulties in computer-aided ferrography
analysis.

Before attempting to extract feature parameters of wear parti-
cle for morphology analysis and identification, it is necessary to
separate wear particles from each other, i.e., wear particle seg-
mentation. The accuracy of segmentation will directly affect the
subsequent feature extraction, classification and identification of
wear particles. Therefore, wear particle segmentation is the critical
first step for intelligent ferrography based on computer image
analysis. Because of this step0s importance, more attention should
be paid to separate wear particles in chains, as the segmentation of
wear particles is even more difficult than the recognition of the
particles [16].

For the segmentation of a ferrograph image, to the best of our
knowledge, existing studies are largely concentrating on the
segmentation of wear particles from the background of the image
[17,18].

Ferrograph images are obtained using an optical microscope
with transmitted and reflected lights. Different combinations of
transmitted and reflected light will result in different background
colors in the images. Hence, it is not easy to separate wear
particles and background based on the traditional gray histogram
threshold method, because no matter where the threshold is set, a
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number of overly bright or overly dark wear particles may be
mistaken as image background and thereby result in incomplete
segmentation.

It has been demonstrated that accurate segmentation could be
obtained using the threshold method in color space, rather than in
gray space [17]. Furthermore, color information can be used along
with in-depth applications of image processing techniques in wear
particle analysis to determine the wear modes and material of
wear particles. Chen et al. indicated that the RGB or HSV color
space should be used in the segmentation between wear particles
from image background, while fuzzy clustering techniques could
be used for the segmentation [18]. In our previous research, we
compared the segmentation and clustering effects for ferrograph
images in different color space, and proposed a 2D k-means color-
clustering algorithm in CIELAB color space which used two color
components (a, b) for segmentation, and omitted the luminance
component to reduce the adverse effects of brightness for image
segmentation [19].

The segmentation of wear particles from particle chains has
also been challenged by many researchers. Li et al. used morpho-
logical erosion and dilation operations on binary images, the edge
of a single wear particle could be detected with the Laplace
operation [20]. Hu et al. applied pretreatment techniques, includ-
ing image enhancement, image segmentation, filling pore and
image erosion, to ferrograph images. Subsequently, high-bright-
ness wear particles were extracted from deposited chains using
the adaptive threshold method [21].

However, the existing segmentation methods are not adaptable
for complicated ferrograph images, there remains a large gap in
the applications.

How to segment the wear particles effectively, particularly the
large abnormal particles within the deposited chains, and to
facilitate the further identification of wear particles is the key
issue facing current ferrograph image analysis.

This research attempts to solve the abovementioned difficult
problems, i.e., the segmentation and clustering of the wear
particles on ferrograph images, to improve the level of intelligent
and automatic analysis for ferrograph images. Therefore, we
propose two new segmentation methods for ferrograph images.
First, an improved ant colony optimization is applied to extract
edges of wear particles. Second, a hybrid method based on
marker-watershed and ant colony clustering algorithm is proposed
to obtain the accurate segmentation of wear particles, especially
the large abnormal wear particles. The segmentation methods are
subsequently evaluated using real ferrograph images.

2. Principle of ant colony optimization

Normally, most of image segmentation approaches are based
on two strategies, e.g., recognizing contour or generating regions
in view of homogeneity. Traditional techniques, such as threshold

method, template matching, region growing and feature cluster-
ing, have been demonstrated to be successful in many applica-
tions. Artificial intelligences, such as neural networks and genetic
algorithms in image analysis, could be considered to be alternate
approaches, but none of them is generally applicable to all images
and different algorithms are not equally suitable for a particular
application [22].

The first ant algorithm, named “Ant System”, was proposed in
the 1990s by Dorigo et al. [23]. This algorithm was followed by the
development of a number of ant colony optimization (ACO)
algorithms [24].

ACO is a population-based meta-heuristic algorithm motivated
by the food foraging behavior of real ant colonies. While foraging,
real ants deposit pheromones on the ground to mark favorable
paths that should be followed by other members of the colony.
Greater quantities of pheromones on the path mean that there is a
higher probability of finding food. However, as the pheromones
evaporate, this condition leads to the disappearance of certain
paths if no ants follow these paths. Therefore, in the end, only
better and shorter paths remain.

In an artificial or computer environment, ACO has two major
steps, e.g., path construction and pheromone update.

In the step of path construction, each ant selects a next suitable
path and moves from one node to another according to a
transition probability function. The transition probability between
node i to j is determined as follows [23]:

pij ¼
ταij ðtÞη

β
ij ðtÞ

∑
sA S

ταisðtÞη
β
isðtÞ

; jAS;

0; otherwise
;

8><
>: ð1Þ

where S is the set of all available paths that an ant can choose in
one step, α and β are adjustment factors for preventing all ants
moving along the same path to obtain the same results, ηijðtÞ
stands for the heuristic guide function, and τijðtÞ represents the
pheromone concentration on the path pij at moment t.

In the pheromone update step, the pheromone concentration
on each path is updated according to the following formula:

τijðt0Þ ¼ ð1�ρÞτijðtÞþΔτij; ð2Þ

where ρ is the pheromone evaporate constant, such that if no ants
pass through a path after a certain time, the pheromone on that
path gradually evaporates, Δτij is the increase of pheromone
concentration on the path after one cycle:

Δτij ¼ ∑
N

k ¼ 1
Δτkij; ð3Þ

where N is the number of ants and Δτkij is the pheromone
concentration left on the path by the kth ant.

Pheromone updating leads ants to search for better solu-
tions for successive iterations. After the algorithm reaches the
termination condition (which can be the maximum number of

Fig. 1. Typical ferrograph images. (a) Wear particle chains, and (b) large abnormal wear particles with blurred edges.
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iterations or time), the best-so-far ant path is selected as a solution
to the algorithm.

Due to such attractive features as being discrete, parallel and
robust, the ACO algorithm can be adopted for image processing and
object detection. For example, ant-inspired algorithms were devel-
oped for image edge extraction [25–29], and they were also used as
intelligent clustering methods for image segmentation [30–34].

In most of the abovementioned studies, heuristic information
for the movement of ants is decided by values of pixels in the gray
level gradient. Only paper [33,34] worked on the solution of
segmentation and object detection in color images, whereby the
experimented results are presented on natural images, medical
images and remote sensing images.

Inspired by the above survey, we seek a segmentation method
based on the ant colony algorithm as the solution to the segmen-
tation of wear particles in color ferrograph images.

3. Edge detection of wear particles based on improved ant
colony optimization (IACO)

Wear particle edges usually refer to the set of pixels at which
image brightness changes sharply. Wear particle edges exist
between wear particles and image background or between wear
particles. Various parameters representing shape characteristics or
outline profiles of wear particles can be extracted from the edges
of wear particles. Moreover, the edge is an important feature that
can be exploited effectively to identify particles in relation to the
ongoing wear processes.

The main principle of wear particle edge detection based on
IACO is the following.

The pixels in the image to be processed can be considered as
the nodes of a graph in which ants move from one pixel to another
following the transition probabilities. The transition probability
depends on the heuristic information and pheromone concentra-
tion. The heuristics information for edge detection is determined
by local statistics (e.g., gradient) of the pixel. An ant will deposit a
certain amount of pheromones when it visits a pixel. The more
ants visit a pixel, the more pheromone deposition will be on that
pixel. In the end, edges can be detected by analyzing the pher-
omone distribution in the image.

The detailed steps of IACO are as follows.

3.1. Pretreatment of color ferrograph image

Conventional edge extraction method is often performed on
gray-scale images. As mentioned above, the use of the color
information can obtain better edge detection results. In this
algorithm, a color image is decomposed to R, G and B three-
component images. The morphological gradients of each compo-
nent image are then calculated as Gi (x, y), i¼1,2,3, respectively.
Thus, the morphological gradient image Gcolor (x, y) is defined as

Gcolorðx; yÞ ¼∑qiGiðx; yÞ i¼ 1;2;3; ð4Þ
where qi is the weighting factor. In this algorithm, qi¼1/3, i¼1,
2, 3.

The morphological opening and closing reconstruction opera-
tion are used on the morphological gradient image to eliminate
noise. Fig. 2(a) is an original image, and Fig. 2(b) is the recon-
structed gradient image.

3.2. The preliminary extraction of wear particle edges

To extract edges of wear particles, first, the traditional thresh-
old algorithm is applied to the morphological gradient image.
The result is shown in Fig. 2(c). It is noted that a large number

of points lie on or close to the edges, and accordingly, these points
are called initial edge points. The improved ACO is later applied to
these initial points to obtain the accurate edges of wear particles.

3.3. IACO for the edge detection of wear particles

The IACO algorithm for edge detection of wear particles is an
iterative process that includes the following steps:

(1) Ant distribution.
At the initial time of each cycle, a certain number of ants are
randomly distributed on the initial edge points, and they later
search the neighboring points in accordance with certain rules.
Because ant searching is a time-consuming process, it is impor-
tant to select the appropriate number of ants. For an M�N size
of ferrograph image, the total number of ants is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � N

p
.

(2) Ant searching rule.
Each artificial ant has its own memory. A Tabu list is used to
describe ant memory. Tabuk is the list of pixels that the kth ant
has already visited. The Tabu list effectively avoids becoming
stuck in a forward-backward loop.
If an ant finds itself surrounded by the pixels that are either in
the Tabu list or occupied by other ants, it is randomly
displaced to another unoccupied pixel that is not in the Tabu
list. Otherwise, the ant moves from the current pixel (r, s) to
one of its 8-neighboring pixels (i, j), according to the max-
imum probability searching rule (transition probability) [27]

pkðr;sÞ;ði;jÞ ¼
ταði;jÞðtÞη

β
ði;jÞðtÞ

∑u∑vταðu;vÞðtÞη
β
ðu;vÞ ðtÞ

; ði; jÞ and ðu; vÞ=2tabuk;

0; otherwise;

8><
>: ð5Þ

where τði;jÞðtÞ is the pheromone concentration and ηði;jÞðtÞ is the
heuristic information of pixel (i, j).
Normally, the heuristic function is defined as

ηði;jÞðtÞ ¼
Gði;jÞðx; yÞ

C
; ð6Þ

where Gði;jÞðx; yÞ denotes the gradient of pixel (i, j) and C is a
constant that usually takes C¼256.
In this study, not only is the gradient but also the color
difference between two pixels is considered. Thus, the
improved heuristic function is defined as

ηn

ði;jÞðtÞ ¼
Gði;jÞðx; yÞ

Δaðr;sÞði;jÞ þΔbðr;sÞði;jÞ þc
; ð7Þ

where Δa and Δb denote the absolute difference of compo-
nent a and b in the CIELAB color space between pixel (r, s) and
(i, j), respectively, and c is the adjustment factor that serves to
prevent Δa and Δb from being zero simultaneously, which
would lead to the denominator of the heuristic function being
zero when usually, c¼1.
As the memory of an ant is limited, the Tabu list is updated
after each ant selects a new pixel.

(3) Pheromone updating rule.
After all ants have moved once, the pheromone level of each
pixel is updated according to the following formula:

τði;jÞðt0Þ ¼ ð1�ρÞτði;jÞðtÞþΔτði;jÞ ð8Þ

In this algorithm, when an ant moves to pixel (i, j), the
pheromone left at pixel (i, j) is Gði;jÞðx; yÞ=C. Thus, the pher-
omone deposition is proportional to the gradient of that pixel.
ρ denotes the evaporate coefficient.

(4) Termination rule.
The termination of this algorithm is achieved by a pre-defined
number of cycles, for which each cycle contains a fixed
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number of ants moving steps. The number of moving steps is
related to the image size and the total number of ants. The
number of iterations is selected to be 50, and the moving steps
of each ant is chosen to be 300 for this algorithm.

Fig. 2(d) shows the final results of edge detection of wear
particles.

3.4. Experimental results

Ferrograph images (600�400) taken from mining and petro-
chemical equipment are examined in this study. A number of
experiments are employed to determine suitable algorithm para-
meters. In the proposed algorithm, the initial value for a pher-
omone is set to 0.01. The adjustment factors α and β influences the
pheromone concentration and heuristic information respectively.
Both α and β are set to 0.5 in this study. The pheromone evaporate
coefficient ρ is set to 0.3. The memory length is set to 40.

Fig. 3(a) shows an original ferrograph image with wear parti-
cles of different sizes, shapes and degrees of brightness. Fig. 3
(b) shows the result of IACO. While it appears that IACO could
extract most of the edges of the wear particles, this method also
has limitations, such as false edges and unclosed edges, Further-
more, it misses some of the edge features. In addition, for images
that have many particles, this method is time consuming because
too many ants are needed to search the edges.

To obtain closed, single-pixel edges of wear particles, we
propose another image segmentation method by combining the
watershed algorithm and the ant colony algorithm.

4. Wear particle segmentation based on combined watershed
and ant colony algorithm (CWACA)

The watershed algorithm, introduced initially by Vincent [35],
is an image segmentation method based on region-generation
strategy. Watershed transformation was simulated based on an

immersion process. At the end of this immersion process, each
minimum is completely surrounded by dams, which delimit its
associated catchment basin. Compared with other algorithms, the
watershed algorithm for image segmentation has certain advan-
tages, such as high precision, high speed, and continuous edges, as
well as disadvantages of over-segmentation due to its extreme
sensitivity to noise in certain cases. Thus, the marker-watershed
algorithm was later proposed to overcome over-segmentation.
However, when the marker-watershed algorithm is applied to
ferrograph image segmentation, because of the complex morphol-
ogy and surface texture of wear particles, especially the large
abnormal wear particles, over-segmentation is inevitable. To over-
come the disadvantage of the watershed algorithm, the new image
segmentation method, CWACA, is proposed in this study.

The main principle of CWACA is the following.
The marker-watershed algorithm is adopted to obtain the

initial segmentation of wear particles. The improved ant colony
clustering algorithm is later used to obtain the accurate segmenta-
tion of wear particles, especially the large abnormal wear particles.

The steps of wear particle segmentation based on CWACA are
as follows.

4.1. Initial segmentation of wear particles

First, the marker-watershed algorithm is applied on the ferro-
graph gradient images to obtain an initial segmentation of wear
particles.

SEGwðx; yÞ ¼WSðGcolorðx; yÞÞ; ð9Þ
where WS () is a watershed transformation and Gcolor (x, y)
represents the color morphological gradient image.

Fig. 4(a) shows an original ferrograph image, and Fig. 4(b) shows
the segmentation result of marker-watershed transformation. It is
determined that the initial segmentation of wear particles could be
obtained using the marker-watershed algorithm. However, due to the
noise and uneven distributed gray level on particle surfaces, over-
segmentation occurs on the surfaces of large wear particles, as shown

Fig. 2. The edge detection of the ferrograph images. (a) Original image, (b) morphological gradient image, (c) initial edges of wear particles, and (d) final edges of wear
particles.

Fig. 3. The edge detection of wear particles. (a) Original image, and (b) IACO.
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in the ellipse in Fig. 4(b). To solve the over-segmentation of large wear
particles, the improved ant colony clustering algorithm is therefore
applied in our study.

4.2. Improved ant colony clustering

In this study, the regions obtained from marker-watershed
segmentation are considered as food for artificial ants. The
improved ant colony clustering algorithm along with differences
in color components and the dynamic radius is later used to search
regions that have similar features. Thus, by merging the over-
segmented regions, a better segmentation result of wear particles
is obtained.

4.2.1. Cluster centroids
The SEGw(x, y) represents the segmented image after the

watershed transformation. It consists of many regions Z¼{Zi|i¼1,
2, 3,…, n}, where n is the number of divided regions and the ith
region Zi¼{pi1, pi2,…, pim} includes m pixels. Each region is
considered as an ant, and Ci (x, y) represents the centroid of the
ith region. Thus, Ci (x, y) is defined as

Ciðx; yÞ ¼
∑
m

k ¼ 1
pikðx; yÞ

m
; i¼ 1;2;⋯;n: ð10Þ

4.2.2. Dynamic clustering radius
The clustering radius is the distance that the ants search. The

clustering radius in the traditional ACO algorithm is constant and
does not reflect the changing results due to dynamic mergers of
similar regions. Therefore, with the merger of different regions,
the search radius should be adjusted accordingly.

The area A of each region is obtained by counting the number
of pixels of each region. The equivalent radius r corresponding to
each region is then calculated by

r¼
ffiffiffiffiffiffiffiffiffi
A=π

p
: ð11Þ

The dynamic clustering radius R is defined as

R¼ n� r; ð12Þ
where n is a constant and n¼3 in this study.

4.2.3. Setting of the pheromone
At moment t, the pheromones remaining on the path from

region i to j is defined as

τijðtÞ ¼
1; dijrR
0; dij4R

(
; ð13Þ

where dij is the Euclidean distance of the cluster centroids of
region i and j.

4.2.4. Improved ant colony clustering criteria
The clustering probability of region i and j is determined by the

following formula:

pijðtÞ ¼
ταij ðtÞη

β
ij ðtÞ

∑
sA S

ταsjðtÞη
β
sjðtÞ

; S¼ fXsjdsjrR; S¼ 1;2;⋯;Ng

0; otherwise

8><
>: ; ð14Þ

where S is the set of all available regions that ant i can choose in
one step.

The heuristic guide function is ηijðtÞ ¼ 1=dij, which denotes the
desired degree of clustering between region j and i. The guide
function is inversely proportional to the distance between the two
regions only without taking into account the color differences of
the two regions. Therefore, in our algorithm, the color difference of
the two regions is introduced into the guide function, and the
improved guide function is defined as

η0ij ¼
R

dijþΔCij
; ð15Þ

where R is the clustering radius, dij is the distance between two
regions, ΔCij is the color difference between region i and j. Thus, it
is defined as

ΔCij ¼ ðΔaijÞ2þðΔbijÞ2 ð16Þ
where Δaij and Δbij denote the difference of two color compo-
nents in the CIELAB color space of two regions, respectively.

If the clustering probability Pij (t) of region i and j is greater
than a pre-set threshold P0, region i merges with region j.

4.3. Corrections of clustering

The accurate segmentation of large wear particles is realized by
using the improved ant colony clustering algorithm. However, for
wear particle chains that contain some tiny particles that may
have similar features, incorrect merger may occur in some cases,
as shown in Fig. 4(c). Therefore, the discrimination and correction
of clustering is applied.

Wear particle chains may appear as elongated, and large
abnormal wear particles tend to appear as layered, flaky or
chunky. Therefore, shape parameter, which is the aspect ratio,
can be used to distinguish large abnormal wear particles from
wear particle chains.

Normally, except the cutting wear particles, the aspect ratio of
large abnormal wear particles is small. Thus, in our algorithm, the
aspect ratio threshold fiber is set to 2. Then, the aspect ratio of each
region obtained from the ant colony clustering process is calculate.
If the aspect ratio of a region is smaller than the pre-set threshold,
the ant colony clustering result is considered to be the final result;
otherwise, the ant colony clustering result is discarded, and the
watershed segmentation result is retained.

Through the above process, the segmentation of abnormal
wear particles can obtained, while at the same time, the incorrect

Fig. 4. CWACA process. (a) Original image, (b) watershed segmentation, (c) ant colony clustering, and (d) CWACA segmentation.
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merger of tiny wear particles on deposited chains can be avoided.
Fig. 4(d) is the final result of CWACA segmentation.

5. Experimental results

These experimental ferrograph images are taken from the
petrochemical equipment. The image size is 800�600 pixels.
The proposed algorithm, CWACA, is developed based on VC þþ
6.0 and OpenCV 1.0 platform. After a number of experiments, for
the CWACA, the adjustment factor α and β are set to 0.5, the
number of iterations is set to 30, and the clustering threshold is
set to 0.1

Figs. 5–7 show the experimental segmentation results of
ferrograph images using K-means clustering, fuzzy C-means
(FCM) clustering, marker-watershed transformation and the pro-
posed CWACA, respectively. In the result of the CWACA, the
divided wear particles are presented with different colors.

When the K-means clustering method is used for image
segmentation, it must specify the number of clusters K. If K¼2,
the separation between wear particles and image background
could be initially realized. However, because of the uneven bright-
ness of image background, in some cases, as shown in Fig. 6(b),
part of the image background is likely to be segmented into wear
particles. If K42, because of the minimal color difference between
some wear particles, it is difficult to achieve the exact accurate
segmentation among wear particles.

While the fuzzy C-means (FCM) clustering is an unsupervised
clustering method that can automatically calculate the number of
clusters, when using this method for ferrograph image segmenta-
tion, due to the uneven brightness of image background and wear
particles, it is also difficult to achieve the exact split between wear
particles, as shown in Figs. 5–7(c).

Due to the immerse mechanism of watershed algorithm, the
single-pixel-wide, connective, closed contours of wear particles
can result when the marker-watershed algorithm is applied to the
ferrograph images, and wear particles can be completely sepa-
rated, even with wear particles having low contrast and weak
boundaries. However, as evidenced from Figs. 5–7(d), certain wear
particles, especially the large abnormal wear particles, are mis-
takenly separated into tiny particles.

Compared with the previous methods, the proposed method
CWACA does not require a pre-set number of clusters. Further-
more, it is a hybrid method. It not only takes the advantages of
watershed, such as simplicity, speed and complete division of the
image but also takes the advantages of ant colony algorithm, such
as intelligent search and heuristic clustering. As the results, each
part of the ferrograph images are properly segmented into wear
particles and background, tiny wear particles on deposited chains,
and large abnormal wear particles, as shown in Figs. 5–7(e).

The above method has been tested with a large number of
ferrograph images. The results have proven that it is effective to
segment wear particles of different sizes, especially for large
abnormal wear particles. For the tiny wear particles in deposited
chains, the accuracy of the segmentation result needs to be
improved, although it is not as important to condition monitoring
and failure diagnosis as the large abnormal wear particles. Also,
the computing efficiency needs to be improved when this method
is used for the ferrograph image with a large quantity of wear
particles.

6. Conclusions

Ferrography is a very useful means to determine the wear
condition of machines. Wear particle segmentation is the critical

Fig. 5. Segmentation results of ferrograph image 1. (a) Original image, (b) K-means, (c) FCM, (d) marker-watershed, and (e) CWACA segmentation.

Fig. 6. Segmentation results of ferrograph image 2. (a) Original image, (b) K-means, (c) FCM, (d) marker-watershed, and (e) CWACA segmentation.

Fig. 7. Segmentation results of ferrograph image 3. (a) Original image, (b) K-means, (c) FCM, (d) marker-watershed, and (e) CWACA segmentation.
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first step for intelligent ferrography based on computer image
analysis.

Two segmentation methods of wear particles based on ant
colony algorithm are proposed in this paper.

The first method uses the threshold algorithm to obtain initial
edge points of wear particles. These points are then input into the
modified ant colony algorithm, which utilizes the color of the pixel
as the heuristic information. While the experimental results
indicate that most of the edges of wear particles can be extracted
using this method, it is time-consuming, and the appearance of
false and unclosed edges limits this technique0s application.

The second method adopts marker-watershed to obtain a
preliminary separation of wear particles. The improved ant colony
clustering algorithm is later used to merge the over-segmented
regions. During this process, not only the color feature but also the
position feature of each region is taken as heuristic information, so
that better segmentation results can be obtained. This method
enables the segmentation of different types of wear particles,
especially for the large abnormal wear particles and particle
chains. Furthermore, this technique presents each wear particle
with a closed single-pixel-width contour, which leads to the
possibility for the following analysis of wear particles. These
experiments demonstrated that this presented method could
generate reasonable wear particle segmentation, thereby illustrat-
ing the method0s practical value.
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