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Edges are one of the most important features of wear particles in a ferrograph image and
are widely used to extract parameters, recognize types of wear particles, and assist in the
identification of the wear mode and severity. Edge detection is a critical step in ferrograph
image processing and analysis. Till date, there has been no single algorithm that guarantees
the production of good quality edges in ferrograph images for a variety of applications.
Therefore, it is desirable to have a reliable evaluation method for measuring the perfor-
mance of various edge detection algorithms and for aiding in the selection of the optimal
parameter and algorithm for ferrographic applications. In this paper, a new non-reference
method for the objective evaluation of wear particle edge detection is proposed. In this
method, a comprehensive index of edge evaluation is composed of three components,
i.e., the reconstruction based similarity sub-index between the original image and the
reconstructed image, the confidence degree sub-index used to show the true or false
degree of the edge pixels, and the edge form sub-index that is used to determine the direc-
tion consistency and width uniformity of the edges. Two experiments are performed to
illustrate the validity of the proposed method. First, this method is used to select the best
parameters for an edge detection algorithm, and it is then used to compare the results
obtained using various edge detection algorithms and determine the best algorithm.
Experimental results of various real ferrograph images verify the effectiveness of the pro-
posed method.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of modern mechanical equipment in the direction of large scale, high productivity, and high reli-
ability, predictive maintenance procedures based on the machine conditions are necessary for decreasing the occurrence of
over-maintenance as well as to prevent the sudden breakdown of machines. Ferrography has been proven to be an effective
means of wear-condition monitoring and fault diagnosis of machines such as aero-engines and mining equipment. This tech-
nique is used to determine the wear condition and wear mechanisms of machines through qualitative and quantitative anal-
ysis on the amount, size, shape, colour, and texture of the wear particles (wear debris) contained in the lubricating or
hydraulic system [1,2]. However, the dependency on human expertise for the analysis and interpretation limits the applica-
tion and potential of this method in the industry [3]. The development of computer image analysis could provide a solution
for the aforementioned problems and greatly improve the accuracy and efficiency of ferrograph analysis [4,5].
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In the last three decades, many efforts have been focused on the application of image processing techniques for the fea-
ture extraction and classification of wear particles [6–11]. Analysis systems based on human–computer interaction, such as
the CAVE [12], CASPA [13], and SYCLOPS [14], as well as expert systems based on 3D particle analysis [15] have been
developed.

CAVE is an interactive control system that is mostly used to carry out analysis on single particles. It applies Fourier trans-
forms and the curvature analysis of the outline of a particle as the input parameters into a neural network, which then clas-
sifies the particle’s shape.

CASPA was developed as an off-line debris classifier. The user is prompted to answer a series of text-based questions con-
cerning the morphology of the particle. Then, it classifies the wear particles in terms of the wear mode by using an expert
system.

SYCLOPS is a semi-automated wear-debris classification system. It classifies the characteristics of the particles by match-
ing them to a selection of stylized images. For example, by defining the particle’s shape as regular, irregular, or elongated, the
user can determine which corresponding image resembles the shape of the particle.

Peng et al. developed an expert system based on 3D particle analysis for interpreting the analysis data of wear debris to
assist machine-condition monitoring and fault diagnosis. However, it is difficult to obtain 3D image analysis data in most
application fields.

Recently, efforts have been made to develop an automatic and reliable wear particle analysis system [16,17]. The appli-
cation of such systems should significantly reduce the inspection time and the requirement of the inspector’s expertise [18].
In such an automatic system, wear particles are first segmented from each other, then the features and parameters are
extracted, and finally, the wear particles are classified and recognized based on the extracted features.

Edges are one of the most important features of wear particles in a ferrograph image, and they provide a concise and accu-
rate representation of the wear particle boundaries. From the edges, more complicated features and parameters of the wear
particles can be extracted. For example, the parameters of area, perimeter, and aspect ratio help in classifying the type of
wear particles and subsequently, the wear mode and severity.

Edge detection is a fundamental operation performed in lower-level image processing and computer vision systems. Pop-
ular edge detection algorithms or detectors include the Sobel, Robert, Prewitt, Laplacian, LoG, and Canny [19]; currently, the
wavelet [20], grey relational operator [21], and marker-watershed algorithms [22] are also applied for the edge detection of
wear particles.

Although the performance of the majority of edge detectors is acceptable for simple and noise-free images, the case is
different for ferrograph images. For various practical environments, the size, colour, and noise of ferrograph images are very
different, which significantly increases the complexity involved in edge detection. It is known that the appearance of the
edges of wear particles in an image varies greatly. The edges vary with respect to the types of wear particles and their shapes
in the images. The edges may be crowded, blurred, or sparse. After the edge detection, the edge image may still contain some
isolated edge points or broken segments. Fig. 1(a) shows an original ferrograph image containing wear particles of various
sizes, outlines, brightness, and surface textures. Fig. 1(b)–(d) show the results of the edge detection performed using the
Sobel, LoG, and Canny detector, respectively. When the Sobel detector is used, as shown in Fig. 1(b), it generates several false
edges for the particles with textures on their surfaces, and the edges of the wear particles are not single-pixel-wide. When
using the LoG detector, some edges tend to be lost owing to blurring, and it also generates several false edges, as shown in
Fig. 1(c). When using the Canny detector, the edges are detected single-pixel-wide; however, the blurred edges are lost,
which results in a discontinuous and unclosed outline of wear particles, as shown in Fig. 1(d).

Till date, there has been no single detection algorithm that guarantees the production of good quality edges in ferrograph
images for a variety of applications. Therefore, it is desirable to have a reliable evaluation method for measuring the perfor-
mance of various edge detection algorithms and for aiding the selection of the optimal parameter and algorithm for ferro-
graphic applications.

The types of edge evaluation methods can be divided into subjective and objective evaluations. Subjective evaluation usu-
ally involves the evaluation of edge detectors by observers; however, it is inevitably expensive with respect to time and
(a) Original image (b) Sobel (c) LoG (d) Canny

Fig. 1. Typical ferrograph image and results of edge detection.
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resources, and difficult to automate [23]. Objective evaluation can be classified as reference-based [24,25] and non-
reference-based methods [26]. In the reference-based method, a ground truth image is required as a reference in order to
evaluate its similarity to the candidate edge maps. However, the ground truth image is not available for ferrograph images
because of the diversity of wear particles. The non-reference-based method does not require a ground truth image. It uses
information from the detected edge map and the original image itself to perform the aforementioned evaluation. Further-
more, most importantly, the non-reference-based method can be automated and is suitable for intelligent ferrography anal-
ysis. An objective evaluation method can play a variety of roles in image processing applications. It can not only be used to
dynamically monitor the detection quality but also to optimize algorithms and the parameter settings of image processing
systems. For example, the objective and quantitative evaluation method can be used as an online feedback signal supplied to
the iterative processes of the edge detection of wear particles. It can also be used to provide support for selecting a better
edge detector or a set of better operator parameters.

Therefore, in this paper, a new non-reference method for the objective evaluation of wear particle edges is proposed. In
this method, the comprehensive index of edge evaluation is composed of three components. The first component is the
reconstruction based similarity sub-index between the original image and the reconstructed image. The second component
is the confidence degree sub-index, which is used to indicate the true or false degree of the edge pixels. The third component
is the edge form sub-index, which is used to indicate the direction consistency and width uniformity of the edges. Two
experiments are performed to illustrate the validity of the proposed algorithm. In the first experiment, this method is used
to select the best parameters in an edge detection algorithm. In the second experiment, this method is used to compare the
result of various edge detection algorithms and determine the best result.

2. Non-reference evaluation method of edge detection

In this paper, a non-reference evaluation method of edge detection is presented based on three indices, namely the recon-
struction similarity sub-index, confidence degree sub-index, and edge form sub-index. A block diagram and the intermediate
results of the proposed evaluation method is shown in Fig. 2.

2.1. Reconstruction similarity sub-index

The reconstruction similarity sub-index is used to compare the reconstructed and original images. The theoretical basis of
this method is that a good edge map captures the essential structures and details of the original images. Therefore, using the
pixel information, a reconstruction on a better edge map would be more similar to the original image [26].

2.1.1. Reconstruction process
Carlsson [27] proposed a method for reconstructing the image based on the detected edges. The basic principle is to

reconstruct the image based on the pixels on both sides of the edge. Interpolation has been used to help reconstruct the edge
image from the original image. Let I, E, and ED represent the original image, binary edge image after edge detection, and the
image obtained after the application of morphology dilation on E, respectively. Let ET represent the edge tube image, which is
obtained by using the ‘‘AND” operation between I and ED, i.e.,
if EDði; jÞ ¼ 1; then ETði; jÞ ¼ Iði; jÞ;
else; if EDði; jÞ ¼ 0; then ETði; jÞ ¼ 0:
If R represents a reconstructed image, under the constraints Rði; jÞ ¼ ETði; jÞ and EDði; jÞ ¼ 1, the Carlsson reconstruction
method can be described as
Original 
image I

Edge
image E

Edge tube 
image ET

⊗

Reconstruction
image 

Similarity 
sub-index fS

Confidence degree
sub-index fC

Edge form 
sub-index fP

Comprehensive
index fIdx

Edge 
detection 

Reconstruction 

Morphological 
dilation 

Fig. 2. Block diagram of the evaluation method.
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i.e., the reconstruction of the image comprises the minimization of the above function.
Based on the Carlsson method, Govindarajan et al. proposed an eight-direction linear-interpolation reconstruction

method and a weighted-median reconstruction method [28,29].
As shown in Fig. 3(a), A(i, j) is one of the background pixels in ET. By searching in all eight directions (horizontal, vertical,

and diagonal) in ET, the edge pixel Tk (k = 1, 2, . . . , 8), which is the nearest to pixel A in each direction can be found. Let tk
(k = 1, 2, . . . , 8) represent the grey value of the corresponding edge pixels, and dk (k = 1, 2, . . . , 8) represent the distance
between Tk (k = 1, 2, . . . , 8) and A. Thus, the linear interpolation reconstruction formula of pixel A is
Rði; jÞ ¼
P8

k¼1ðtk=dkÞP8
k¼1ð1=dkÞ

: ð2Þ
The weighted median reconstruction formula is
Rði; jÞ ¼ medianðt1}w1; t2}w2; . . . ; t8}w8Þ; ð3Þ

where
wk ¼ roundð100=dkÞ; ð4Þ

and } is the replicator operator, which is defined as
t}w ¼ ðt; t; . . . ; tÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
w

: ð5Þ
The distance between two pixels in a direction influences the reconstruction result. Shepherd [30] pointed out that, in
psychological space, the probability of generalization approximates an exponential decay function of distance. Jin et al.
[31] proposed a weighted formula, which describes the decay as
w ¼ 1:0� 1:0

ð1:0þ edÞ3:75
; ð6Þ
where w belongs to ½0;1�.
According to human visual psychology, the pixels nearer to the reconstructed pixel will have a relatively large impact on

it. Therefore, in our method, on considering the reconstruction pixel as the centre, its neighbourhood is divided into eight
regions, as shown in Fig. 3(b). Two pixels in each region, which have the nearest distance to the centre pixel, are located.
The two pixels are represented as tkj (k = 1, 2, . . . , 8; j = 1, 2). The reconstruction equation based on the psychological distance
is
Rði; jÞ ¼
P8

k¼1

P2
j¼1ðtk;j=wk;jÞP8

k¼1

P2
j¼1ð1=wk;jÞ

: ð7Þ
(a) (b)

1

23

4

5

6 7

8

1

2
34

5

6
7 8

A 

Fig. 3. Interpolation mode of image reconstruction.
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The improved reconstruction method uses eight regions instead of the eight standard directions in the traditional
method, and the psychological distance is also introduced to the pixel distance, which is in line with human visual psychol-
ogy; a more accurate reconstructed image could thus be obtained.

Fig. 4 shows an example of image reconstruction, where Fig. 4(a) is a local image of a wear particle, and Fig. 4(b) shows a
binary edge image after edge detection. Fig. 4(c) shows the grey value of each pixel in the edge tube image, and Fig. 4(d)
shows the grey value of the corresponding pixels after image reconstruction.

2.1.2. Reconstruction similarity
The accuracy of the edge detection can be evaluated by determining the similarity between the original image and the

reconstructed image.
For determining the similarity between two images, the pixel-wise mean square error (MSE) and mean absolute error

(MAE) are the most commonly adopted statistical methods. A lower MSE or MAE indicates a greater similarity between
two images and a superior quality of edge detection. However, these statistical methods do not take the human visual sys-
tem properties into consideration. Therefore, they are inappropriate for use as reliable measures for some images [26]. Wang
et al. [32] proposed a similarity evaluation method that defines the similarity of two images as a function of luminance, con-
trast, and structure.

Given two images x and y, lx and ly represent the mean of the grey value of each image; rx and ry represent the standard
deviation of the grey value of image x and y, respectively; and rxy represents the covariance of image x and y. c1, c2, and c3 are
constant values. The similarity of the two images is defined as
SSIMðx; yÞ ¼ ð2lxly þ c1Þð2rxy þ c2Þ
ðl2

x þ l2
y þ c1Þðr2

x þ r2
y þ c2Þ ; ð8Þ
where
c1 ¼ ðK1LÞ2;

lx ¼
XN
i¼1

wixi;

rx ¼
XN
i¼1

wiðxi � lxÞ2
 !1=2

;

rxy ¼
XN
i¼1

wiðxi � lxÞðyi � lyÞ:
(a) Local image and pixel value (b) Edge image and pixel value

(c) Edge tube image and pixel value (d) Reconstruction image and pixel value
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Fig. 4. Reconstruction of wear particle image.
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The reconstruction similarity sub-index over the entire image is defined as the mean of the SSIM values
f S ¼ MSSIM ¼ 1
mn

Xm
i¼1

Xn
j¼1

SSIMðxi; yiÞ: ð9Þ
It can be seen from Eq. (9) that the entire image of the reconstruction similarity fs is a monotone function, and therefore,
the greater the number of detected edge pixels, the greater the reconstructed similarity will be. However, it is obvious that
the reconstruction image will have a large similarity with the original image if the edge image has more pixels including false
edge pixels; unfortunately, the quality of the edge detection is not very good. Therefore, it is necessary to identify and dis-
tinguish between authentic and false edge pixels.

2.2. Confidence degree sub-index

Because of the texture on the surface of some wear particles or the blurred edges of some thick particles, some false edges
may be detected; hence, it is necessary to evaluate the authenticity of the edge pixels.

The grey value of an edge pixel is different from its neighbouring pixels, and thus, the mean square deviation of the grey
value of the edge pixel and its neighbour can be used to indicate this difference.

In order to reduce the interference of the noise, the neighbouring mean square deviation of a pixel is calculated from the
average grey value of its neighbouring pixels while excluding the pixel that has the maximum or minimum grey value in the
neighbourhood.

For pixel I(i, j), its k � k neighbourhood is defined as
Iwi;j ¼ fIðx; yÞ; x� i ¼ 0;�1; . . . ;�ðk� 1Þ=2; y� j ¼ 0;�1; . . . ;�ðk� 1Þ=2g:

Thus, the mean square deviation is
ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k2 � 2

X
Iðx;yÞ2Iwi;j

Iðx;yÞRmaxðIwi;j Þ
Iðx;yÞRminðIwi;j Þ

ðIðx; yÞ � li;jÞ2
vuuuut ð10Þ
where li;j is the mean gray value of the remaining pixels after the two pixels that have the maximum and minimum grey
values are eliminated. The neighbouring mean grey deviation of pixel I(i, j) in the original image Iðm� nÞ is defined as
rI
i;j; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n:
The neighbouring mean grey deviation of the edge pixel Eði; jÞ in the original image is defined as
rE
i;j; Eði; jÞ ¼ 1; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n:
In the k � k neighbourhood of an edge pixel E(i, j), the automatic threshold method is used to separate the background
from the edge pixels, and then, the number of the background pixels N can be determined. The maximum mean grey devi-
ation in the neighbourhood of the edge pixel E(i, j) can be obtained as
TE
ri;j
; Eði; jÞ ¼ 1; i ¼ 1; . . . ;m; j ¼ 1; . . . ;n:
Therefore, the relative grey deviation of the edge pixel E(i, j) is defined as
r0
i;j ¼

rE
i;j=T

E
ri;j
; N > N0

0; N 6 N0

(
; ð11Þ
where N0 is a constant, and generally, if k = 7, N0 ¼ 20.
A larger relative deviation corresponds to a more significant change in the grey value in the neighbourhood of pixel E(i, j),

and subsequently, the higher relative authenticity of E(i, j) as the edge pixel. Conversely, a smaller relative deviation corre-
sponds to a smaller change in the grey value and a higher relative possibility that E(i, j) is a false edge pixel.

The confidence degree sub-index of a pixel is defined as
ci;j ¼ f ðr0
i;jÞ ¼

1þ
ffiffiffiffiffiffiffiffiffiffiffi
2r0

i;j
�1

p
2 ; r0

i;j P 0:5

2r02
i;j; r0

i;j < 0:5

8<
: : ð12Þ
The confidence degree sub-index of the edge image is the mean value of that of all the edge pixels.
f C ¼ 1
sum

X
Eði;jÞ¼1

ci;j; ð13Þ
where sum is the number of the detected edge pixels.
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In general, the greater the number of edge pixels that are detected, the greater the probability that the false edges appear,
and the smaller the edge confidence is. To a certain extent, the reconstructed similarity sub-index could be corrected by
using the confidence degree sub-index.

2.3. Edge form sub-index

The edge form indicates the edge connectivity and the edge width uniformity [33]. The edge connectivity measures how
edge pixels are contiguous and edge segments are connected. The edge width uniformity evaluates how the edges are formed
as thin lines.

Let Eðm; nÞ denote an edge image obtained from the edge detection, and Epðx; yÞ denote an edge pixel. For an edge pixel,
Epðx; yÞ ¼ 1, and for a non-edge pixel, Epðx; yÞ ¼ 0. Let WdðEpðx; yÞÞ be an evaluation window the size of which is d� d, and
Epðx; yÞ is located at the center of the window. Let PdðkÞ denote the pixel patterns that are formed by k edge pixels in

WdðEpðx; yÞÞ, where k < d2. That is, a PdðkÞ pattern has k edge pixels in a square window consisting of d � d image pixels, with
the evaluating edge pixel at the centre. As the k edge pixels can be distributed in various ways in the d � d window, PdðkÞ
actually represents a group of pixel patterns. Let Pi

dðkÞ denote the individual edge patterns in the PdðkÞ group. Let jPdðkÞj
be the number of individual edge patterns in the PdðkÞ pattern group, and #Pi

dðkÞ be the total number of occurrences of

Pi
dðNÞ edge patterns in an image. Let N be the total number of edge pixels in an image Eðm;nÞ.
Table 1
Strengt

k

P3ðk
SðP3

Norm
jPdðkÞj ¼ Cðd2 � 1; k� 1Þ: ð14Þ

The strength value SðPdðkÞÞ for a pattern group PdðkÞ is
SðPdðkÞÞ ¼ 1
jPdðkÞj

XjPdðkÞj
i¼1

SðPi
dðkÞÞ: ð15Þ
On considering an evaluation window of size 3 � 3 as an example, the strength value SðP3ðkÞÞ for a pattern PdðkÞ is shown
in Table 1 [33].

It can be seen from Table 1 that when there are three to five edge pixels in the evaluation window of size 3 � 3, the
strength values are relatively large, and thus these pixels would be true edge pixels. If there are only one to two pixels in
the window, the strength value is small, and these pixels are noise in the image. When the detected window has more than
six pixels, the strength value is small, which means that the pixels may be located on the blurred edges.

The edge form sub-index f P of the edge image is defined as the mean value of the strength of each edge pixel.
f P ¼ lsðEðm;nÞÞ ¼ 1
N

Xd2
k¼1

#PdðkÞ � SðPdðkÞÞ: ð16Þ
The range of f P is ½0;1�, a higher f P represents a better quality of edge detection.

2.4. Comprehensive index

Based on the characteristics and relationships of the above three indices, this paper presents a comprehensive index f Idx
that can be used to objectively evaluate the quality of edge detection of the wear particle image
f Idx ¼ f S � f C � f P: ð17Þ

These three indices, namely, the reconstruction similarity sub-index f s, the confidence degree sub-index f c , and the edge

form sub-index f p are all in the range of 0–1, and therefore, the range of the comprehensive evaluation index is also in the
range of 0–1.

When the parameters in an edge detection algorithm are changed or a different edge detection algorithm is applied to
detect the edges of wear particles in ferrograph images, a different result is obtained. The greater the number of detected
edge pixels, the larger the reconstruction similarity sub-index, and the smaller the confidence degree sub-index. The edge
form sub-index is used to correct the reconstruction similarity sub-index and confidence degree sub-index in a manner sim-
ilar to that of a normal function, which can guarantee a more accurate comprehensive evaluation index.
h value and the normalization strength value [33].

1 2 3 4 5 6 7 8 9

Þ 1 8 28 56 70 56 28 8 1
ðkÞÞ 0 0.50 0.86 0.89 0.71 0.36 0.07 0 0
alization SðP3ðkÞÞ 0 0.56 0.97 1.00 0.80 0.40 0.08 0 0
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3. Experiments and results

The objectives of the experiments include two aspects: the performance of the edge detection algorithm with various
parameters is evaluated in order to realize the optimization of the parameters of the algorithm, and various edge detection
algorithms are compared using the same ferrograph image in order to evaluate the various edge detection algorithms. The
experimental ferrograph images are obtained from petrochemical equipment. The image size is 300 � 300 pixels. The pro-
posed algorithm is developed based on VC++ 6.0 and OpenCV 1.0 platform.
3.1. Evaluation of an edge detection algorithm using various parameters

Several efforts have been focused on the edge detection of wear particles. Fig. 5(a) shows a ferrograph image with some
abnormal large wear particles and small debris. Fig. 5(b)–(g) show the various results obtained on using the L&G edge detec-
tion algorithm [34] on the ferrograph image shown in Fig. 5(a). The L&G algorithmmakes use of two parameters: one param-
eter is the threshold of the wavelet analysis, and the other is the double parameters of the threshold of the grey relational
analysis. Six groups of the combinations used are shown in Table 2.

By using the above six groups of thresholds, various edge images can be obtained, as shown in Fig. 5(b)–(g). The evalu-
ation method with the proposed comprehensive index is applied to these images, and the evaluation results are shown in
Table 3.

It could be observed from Fig. 5(b)–(d) that only some isolated pixels are detected, which are not connected to present the
real edges. Fig. 5(e) and (f) show partially complete edges of the wear particles; however, some of the edges are unclosed.
Fig. 5(g) shows the best edge detection result—most of the edges are detected and they are closed, with single-pixel-wide.

The larger the comprehensive index, the better the edge image obtained. As can be observed from Table 3, the order of the
quality of the evaluation result is

Fig. 5(g) > Fig. 5(f) > Fig. 5(e) > Fig. 5(d) > Fig. 5(c) > Fig. 5(b).

The evaluation result is the same as that observed with human eyes.
When the parameters are set as per group 6, i.e., (0.15, (0.83, 0.98)), the best edge detection result is obtained. At the same

time, from the comparison of the evaluation results of Fig. 5(e) and (g), it can be observed that the change in wavelet param-
eters has little effect on the comprehensive index fIdx. However, if the parameter of the grey relational analysis is changed, for
example, the different parameter of Fig. 5(d) and (g), the comprehensive index fIdx is also changed accordingly. Therefore, in
the L&G edge detection algorithm, the parameter of the grey relational analysis has a greater effect on the edge detection
(a) Original image        (b) fIdx = 0.278           (c) fIdx = 0.287               (d) fIdx = 0.294

(e) fIdx = 0.591              (f) fIdx = 0.604           (g) fIdx = 0.619 

Fig. 5. Edge images of example 1 obtained with different parameter values.



Table 2
Combinations of the parameters of L&G algorithm.

Threshold Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Wavelet 0.45 0.30 0.15 0.45 0.42 0.15
Grey relational analysis (0.83,0.93) (0.86,0.93) (0.83,0.93) (0.83,0.98) (0.86,0.96) (0.83,0.98)

Table 3
Comprehensive index of evaluation obtained using L&G algorithm.

Reconstruction similarity sub-index fS Confidence degree sub-index fC Edge form sub-index fP Comprehensive index fIdx

Fig. 5(b) 0.863 0.722 0.446 0.278
Fig. 5(c) 0.874 0.729 0.451 0.287
Fig. 5(d) 0.877 0.729 0.460 0.294
Fig. 5(e) 0.882 0.706 0.949 0.591
Fig. 5(f) 0.887 0.713 0.955 0.604
Fig. 5(g) 0.895 0.715 0.967 0.619
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results than that of the wavelet analysis. Therefore, the optimized parameters can be obtained by using the proposed edge
detection evaluation index.

Three more typical ferrograph images are selected as the experimental images. Fig. 6(a) shows an image with a large
abnormal wear particle and uneven background colour. Fig. 7(a) shows an image with wear debris distributed in the form
of chains, and the background colour is almost green. Fig. 8(a) shows an image that has inconsistent background brightness
and some black oxide particles with blurred edges. By using the same six groups of thresholds from Table 2, different edge
images can be obtained, as shown in Figs. 6(b)–(g), 7(b)–(g), and 8(b)–(g). The comprehensive index of evaluation fIdx is cal-
culated and listed in Table 4 for obtaining the various edge detection results. The comprehensive index of evaluation fIdx is
also specified below each image.

It can be observed from Fig. 6(a) that because the large wear particle has a rough surface, the texture on the surface has
been mistakenly detected as several false edges, as shown in Fig. 6(d) and (g). However, using the proposed algorithm, the
obtained comprehensive index of the evaluation result is the same as that observed with human eyes, and the order of the
quality of the evaluation result is

Fig. 6(f) > Fig. 6(e) > Fig. 6(c) > Fig. 6(b) > Fig. 6(g) > Fig. 6(d).
(a) Original image         (b) fIdx = 0.282            (c) fIdx = 0.304           (d) fIdx = 0.125

fIdx = 0.603            (f) (e) fIdx = 0.604          (g) fIdx = 0.205 

Fig. 6. Edge images of example 2 obtained with different parameter values.



(a) Original image           (b) fIdx = 0.07            (c) fIdx = 0.077            (d) fIdx = 0.078

                 (e) fIdx = 0.16             (f) fIdx = 0.167           (g) fIdx = 0.177

Fig. 7. Edge images of example 3 obtained with different parameter values.

(a) Original image (b) fIdx = 0.213           (c) fIdx = 0.228           (d) fIdx = 0.235

fIdx = 0.551 (f) (e) fIdx = 0.570         (g) fIdx = 0.605 

Fig. 8. Edge images of example 4 obtained with different parameter values.
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Therefore, for this image, the best threshold would be that of group 5, i.e., (0.42, (0.86, 0.96)).
As shown in Fig. 7, because some of the fine wear debris is too tiny to be detected, each comprehensive index is small.

However, according the order of the index, the optimized threshold, i.e., the sixth group of thresholds can be obtained.



Table 4
Comprehensive index of evaluation for L&G algorithm.

Comprehensive index fIdx Comprehensive index fIdx Comprehensive index fIdx

Fig. 6(b) 0.282 Fig. 7(b) 0.07 Fig. 8(b) 0.213
Fig. 6(c) 0.304 Fig. 7(c) 0.077 Fig. 8(c) 0.228
Fig. 6(d) 0.125 Fig. 7(d) 0.078 Fig. 8(d) 0.235
Fig. 6(e) 0.603 Fig. 7(e) 0.16 Fig. 8(e) 0.551
Fig. 6(f) 0.604 Fig. 7(f) 0.167 Fig. 8(f) 0.57
Fig. 6(g) 0.205 Fig. 7(g) 0.177 Fig. 8(g) 0.605
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Fig. 8(a) shows some black oxide particles with blurred edges. By using the first five groups of thresholds, some edges of
wear particles were lost owing to blurring as shown in Fig. 8(b)–(f). As can be seen from Fig. 8(g), the majority of the edges
are closed, and its comprehensive index also confirms it to be the best edge detection result.
3.2. Evaluation of the various algorithms for edge detection

In this experiment, five detectors and algorithms, i.e., the Sobel, Roberts, Canny, lifting wavelet, and L&G algorithms are
selected for detecting the edges of wear particles in Fig. 9(a). The detection results are shown in Fig. 9(b)–(f), and the com-
prehensive index is calculated and listed in Table 5 for evaluating the various edge detection results. The comprehensive
index of evaluation fIdx and the threshold parameter used in the L&G algorithm are also specified below each corresponding
image.

It can be observed that there are some false edges and unclosed edges in Fig. 9(b), and the boundaries are not single-pixel-
wide; Fig. 9(c) and (d) also have similar problems to those observed in Fig. 9(b). In Fig. 9(e), there are almost no false edges;
however, the boundary is unclosed and not single-pixel-wide. These problems certainly affect the successive analysis of wear
particles. Fig. 9(f) shows the best results of edge detection; the edges of the majority of the wear particles are closed and
single-pixel-wide.

Table 5 shows the same order of the quality of the evaluation result that people observe, that is,

Fig. 9(f) > Fig. 9(e) > Fig. 9(d) > Fig. 9(c) > Fig. 9(b).

When the L&G algorithm is used to detect the edges of wear particles, the best edge detection results can be obtained, and
the results of the lifting wavelet algorithm are slightly inferior. However, in the case of the Canny, Roberts, and Sobel algo-
rithms, because they have no strong anti-noise ability, the result images have more false edges leading to edge detection
quality is reduced.
(a) Original image (b) Sobel fIdx = 0.139 (c) Roberts fIdx = 0.181

(d) Canny fIdx fIdx = 0.251 (e) Lifting wavelet = 0.326 (f) L&G fIdx = 0.465 (0.1, (0.86, 0.96)) 

Fig. 9. Detection results of example 5 by various algorithms.



Table 5
Evaluation results of edge detection for various algorithms.

Reconstruction similarity sub-index fS Confidence degree sub-index fC Edge form sub-index fP Comprehensive index fIdx

Fig. 9(b) 0.967 0.297 0.483 0.139
Fig. 9(c) 0.963 0.303 0.620 0.181
Fig. 9(d) 0.965 0.280 0.930 0.251
Fig. 9(e) 0.949 0.394 0.873 0.326
Fig. 9 (f) 0.898 0.535 0.967 0.465

Fig. 10. Detection results of example 6 by various algorithms.

Fig. 11. Detection results of example 7 by various algorithms.
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Fig. 12. Detection results of example 8 by various algorithms.

Table 6
Evaluation results of edge detection with various algorithms.

Comprehensive index fIdx Comprehensive index fIdx Comprehensive index fIdx

Fig. 10(b) 0.061 Fig. 11(b) 0.062 Fig. 12(b) 0.149
Fig. 10(c) 0.135 Fig. 11(c) 0.111 Fig. 12(c) 0.271
Fig. 10(d) 0.244 Fig. 11(d) 0.282 Fig. 12(d) 0.284
Fig. 10(e) 0.355 Fig. 11(e) 0.354 Fig. 12(e) 0.41
Fig. 10(f) 0.598 Fig. 11(f) 0.454 Fig. 12(f) 0.599
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Another three typical ferrograph images are selected as experimental images. Fig. 10(a) shows an original ferrograph
image that has uneven background brightness with some large wear particles and wear debris chains. Fig. 11(a) shows an
original image that has a yellow background colour with some wear debris chains. Fig. 12(a) shows an image that has a fati-
gue wear particle with blurred edges. The detection results are shown in Figs. 10(b)–(f), 11(b)–(f), and 12(b)–(f), and the
comprehensive index is calculated and listed in Table 6 for evaluating the various edge detection results. The comprehensive
index fIdx and the threshold parameter used in the L&G algorithm are also shown below each corresponding image.

The larger the comprehensive index, the better the edge detection obtained. As can be observed from Table 6, the best
edge detection results are shown in Figs. 10(f), 11(f), and 12(f), which shows the same order of the quality of the evaluation
result that people observe.

The above experimental results indicate that the proposed method is effective for evaluating the parameters and algo-
rithm of edge detection for ferrograph images.

4. Conclusion

In this paper, a non-reference quantitative evaluation method for edge detection of wear particles is proposed. This
method does not require an image edge reference or other prior knowledge. Firstly, the method can be used to reconstruct
an image by using the improved interpolation algorithm based on psychological distance and to calculate the reconstruction
similarity sub-index fS between the reconstructed image and the original image. Secondly, the calculated confidence degree
sub-index fC is used to indicate the true or false degree of edge pixels. Thirdly, the calculated edge form sub-index fP is used
to indicate the direction consistency and width uniformity of the edges. Lastly, the final comprehensive evaluation index fIdx
was obtained from the calculated reconstruction similarity sub-index fS, confidence degree sub-index fC, and edge form sub-
index fP. From the preliminary experimental results, it could be observed that the evaluation result for the edge detection of
wear particles obtained using the proposed method is similar to that observed with human eyes, and the evaluation results
are objective and reasonable. The evaluation method has certain practical application value in an automatic ferrography
analysis system. Furthermore, because of the various practical engineering applications, the wide variety of wear particle
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types, various image processing and segmentation methods, etc., are likely to increase the complexity of the evaluation pro-
cess. It is necessary that the proposed evaluation method be further discussed with respect to various practical environments
in order to make the evaluation method more suitable for specific engineering applications.
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