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A Lightweight Convolutional Neural Network For Real-time Detection Of
Aircraft Engine Blade Damage
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To address the large number of parameters and the computational complexity of deep learning models in the
field of borescope detection, we propose a lightweight blade damage detection model LSSD using a knowledge
distillation algorithm. First, the inverse residual structure is used to lightweight the backbone network of the
classic SSD model. Then, the K-means clustering algorithm is used to optimize the scale and number of anchor
boxes to reduce the parameters and computational complexity of the proposed model. Second, to ensure that
the lightweight model has a certain level of detection accuracy, a feature fusion module CA-FPN combined
with coordinate attention and a small damage detection enhancement module W-Inception are embedded.
Finally, the knowledge distillation algorithm is used to further improve the detection accuracy of the model.
The number of parameters of the LSSD model is 4.99M, the MACs is 3.541G, and the detection speed reaches
32FPS. Compared with the SSD model, the LSSD model reduces the number of parameters by 79.3% and the
computational complexity by 88.42%, resulting in a 2-fold increase in the detection speed.
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1. Introduction

As the power heart of an aircraft, the aeroengine is the ba-
sic guarantee for safe flight. Blades are key components of
aeroengines, and they are prone to damage, such as abla-
tion, notches, and cracks, under harsh working conditions
such as high temperature, high pressure, and variable loads
[1–4], posing a serious threat to aircrafts. Omitting defects
during the inspection process can cause serious damage to
the engine and aircraft and may lead to serious accidents
[5]. Borescope detection, the most widely used blade dam-
age detection technology at present [6, 7], can realize in situ
blade damage detection and avoid the complicated work
of disassembling an engine. However, borescope mirrors
mainly rely on manual operation and have uncertain fac-
tors due to personnel differences. In the face of various

types and sizes of damage and poor lighting conditions,
they are easily missed or misreported. To improve the au-
tomation and intelligence of borescope detection, many
researchers have introduced image processing[8, 9] and
deep learning technology. Wong et al. [10] used the Mask
RCNN model to segment and track damage to rotor blades.
Cai et al. [11] proposed a lightweight YOLOv4 model to
solve the problems of a large number of parameters and
slow detection speed. At the cost of losing 3.55% of the
mAP, the model parameters were reduced to one-third
of the original values, resulting in an average detection
speed of 37.3 fps. He[12] proposed a SW-YOLO model for
borescope video detection of aeroengine blades. The model
added a spatial channel attention module to the backbone
network of YOLOv5 and optimized the feature pyramid
used for feature fusion in the neck network, improving
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the detection accuracy of the model. Li[13] used DDSC-
YOLOv5 for aircraft engine borescope detection video and
introduced variable convolution on the basis of YOLOv5 to
overcome the disadvantage of poor geometric transforma-
tion of neural networks. They also used variable convolu-
tion to improve the efficiency of feature extraction while re-
ducing computational complexity and improving accuracy
while minimizing computational complexity. Shang[14]
constructed a network model with classification, localiza-
tion, and segmentation functions based on Mask R-CNN
for texture information of damage and proposed practical
evaluation indicators for blade damage detection. Wei[15]
designed a remote borescope detection system that works
in collaboration with a borescope, Raspberry Pi, and server,
which has significant advantages in terms of damage de-
tection accuracy, real-time performance, and maintenance
costs. The video collected by the borescope is encoded and
processed frame by frame by Raspberry Pi and then trans-
mitted to a remote server. The server completes damage
detection and sends the results back to Raspberry Pi for
display through the local area network.

Due to resource constraints in industrial production,
lightweight networks often perform better in engineering
practice. Howard [16] proposed a lightweight neural net-
work called MobileNets for embedded devices such as
mobile phones by effectively reducing network parameters
through convolutional kernel decomposition. The shuf-
fleNet[17] model proposed by Zhang et al. uses point
by point convolution and channel shuffling, greatly re-
ducing the computational complexity of the network, and
performs well on ImageNet and MS COCO. Liu[18] et al.
proposed the deep learning model YOLOv3-Mobilenet-PK
using backbone network replacement, filtering pruning,
and knowledge distillation methods, and successfully de-
ployed it on edge devices to detect surface damage of the
WT blades.

The above deep learning models used for borescope
detection have high accuracy, but they have the character-
istics of a large number of parameters, high computational
complexity, and high hardware configuration requirements,
making it difficult to directly deploy them in mobile devices
with limited hardware resources. Therefore, we propose a
lightweight LSSD model based on knowledge distillation
for blade damage detection, to achieve integrated intelli-
gent damage detection deployed on edge devices.

2. Methods

SSD is an excellent one-stage object detection algorithm
proposed by Liu et al. [19]. The SSD object detection algo-
rithm combines the advantages of Faster-RCNN[20] and

YOLO[21] algorithms, effectively balancing detection accu-
racy and speed, and is widely used in the fields of surface
defect detection and damage detection. Therefore, we im-
proved and optimized the SSD model, and constructed a
lightweight convolutional neural network model LSSD for
aircraft engine blade damage detection. The structure of
LSSD model is shown in Fig. 1. The main improvements
of LSSD Model include: (1) the backbone network of LSSD
was reconstructed using the inverse residual structure, the
number and size of anchor boxes were optimized using K-
means clustering method, resulting in a significant reduc-
tion of the model parameter and computational complexity;
(2) by integrating the improved feature fusion structure CA-
FPN and the W-Inception module designed for detecting
small-sized blade damage, ensure LSSD model has grati-
fying detection accuracy, (3) using knowledge distillation
strategy to improve the detection capability of the model
without increasing model parameters.

2.1. Backbone network lightweight

By applying deep learning technology to achieve intelligent
borescope detection on mobile devices with limited hard-
ware resources, the convolutional neural network models
should have the characteristics of fewer parameters and
lower computational complexity. MobileNetv2 not only
reduces model parameters and computational complexity,
but also gives good consideration to accuracy. Its excel-
lent structural design can be well transferred to our model.
Therefore, we replaced VGG16 in the SSD model backbone
network with MobileNetv2[22] and extended a new feature
layer with an inverted residual structure.

We utilized the core idea of MobileNetv2, which is depth
separable convolution and inverse residual structure, to
construct the backbone of LSSD. Depth separable convo-
lution decomposes the convolution into channel wise con-
volution and point wise convolution, significantly reduce
the model parameter and computational complexity. In
LSSD, we perform point by point convolution to increase
the dimensionality of the input feature map, then use chan-
nel by channel convolution with a kernel size of 3 × 3 to
extract features from the feature map. Finally, perform
point by point convolution to reduce the dimensionality
of the feature map. The entire process is characterized by
an inverted residual structure of "expansion-convolution-
compression", ensuring that lightweight network has high
detection accuracy.

2.2. Optimization of initial values of anchor boxes

The anchor boxes of SSD model is designed for the detec-
tion of targets such as people, cars, and other common
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Fig. 1. Structure of the LSSD model

objects in daily life. However, LSSD is designed for the
detection of the blade damages such as ablation, burn-
through, notch, and crack. The objects in the two datasets
have significant differences, and using the original anchor
boxes will not only introduce a large number of redundant
parameters and computational load, but also slow down
the convergence speed of the network. To avoid the above
defects, we use the K-means clustering algorithm to cluster
the ground-truth bounding boxes and reset the scale of the
anchor boxes. The specific workflow is as follows:

1. Randomly select several ground-truth bounding boxes
(i.e. k = 5 ), and the width of a bounding box is wki,
the height is hki, and they are used as cluster centers.

2. Calculate the distance from all ground-truth bounding
boxes in the aircraft engine blade damage dataset to k
cluster centers, and mark each ground-truth bounding
box as the same class as the nearest cluster center.

3. Calculate the average width and height of the ground-
truth bounding box marked as the same class in (2),
and regenerate k cluster centers.

4. Repeat steps (2) and (3) until the coordinates of k clus-
ter centers no longer change.

Use Euclidean distance to measure the distance between
each ground-truth bounding box and k cluster centers. The
calculation formula for Euclidean distance is as follows:

D (w, h, wki, hki) =

√
(w − wki)

2 + (h − hki)
2 (1)

where w is the width of any box in the dataset, h is the
height of any box in the dataset. The calculation formula
for regenerating k cluster centers is:

m′
j =

1
Nj

∑ m (2)

where m represents any coordinate with mi as the cluster
center, Nj represents the number of anchor boxes in the
same class as mi (including mj ), and m′

j represents the j-th
new cluster center.

The process of resetting anchor boxes using K-means
clustering algorithm is shown in the Fig. 2.

2.3. Feature fusion structure

The shallow feature map of the SSD model only con-
tains edge information, which has insufficient represen-
tation ability. Moreover, when the backbone network is
lightweight, the network’s ability to capture spatial infor-
mation deteriorates, resulting in a significant decrease in
detection accuracy. To address the above issues, we in-
troduce the improved feature fusion structure CA-FPN
into the LSSD model. The FPN structure[23]transfers the
semantic information of deep networks to shallow net-
works, giving shallow feature maps rich feature informa-
tion and enhancing the model’s detection ability for small
and medium-sized targets. Coordinate attention can cap-
ture the cross-channel and positional information of feature
layers, allowing the model to more accurately identify and
locate blade damage. Coordinate attention[24] is a novel
and efficient attention mechanism proposed by Hou in
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Fig. 2. Reset anchor box process using K-means clustering
algorithm

2021. It simultaneously performs global pooling on the
input feature map along the H and W directions, generat-
ing two one-dimensional feature vectors with directional
awareness. The feature vectors are convolved and encoded
to generate an attention map that can capture long-distance
dependencies. By multiplying the attention map with the
input feature map, the model’s attention to the location of
the region of interest is strengthened. By increasing the
coordinate attention mechanism, the attention of different
scale feature fusion can be improved, so that the three-scale
feature map output by CA-FPN can provide more useful
features for the detection head.

2.4. Small damage detection enhancement module

The shallow feature maps in the SSD model have a higher
resolution, thus retaining considerable texture information.
However, the number of convolutions from the input im-

age to the shallow feature map is relatively small, resulting
in poor representation ability of the shallow feature maps
and poor generalization ability of the model for small-scale
damage detection. In order to detect small-scale damage
through shallow feature maps and improve the generaliza-
tion ability, we design an enhancement module, namely
W-Inception, as shown in Fig. 1.

The W-Inception module includes multiscale dilated
convolution kernels and employs parallel convolution, as
well as residual connections, all of which are aimed at
improving model performance. The specific workflow of
the W-Inception module is as follows: the input feature
map is parallelly convolved through two dilated convolu-
tions with different rates; then the resulting output is fused
with the original input to obtain the final output. Dilated
convolution can expand the receptive field under the condi-
tion of unchanged feature map resolution, making shallow
feature maps have a certain perception of global features
and improving the model’s detection accuracy for small
damage. Residual connections can preserve important in-
formation from the input feature map and compensate for
the shortcomings of dilated convolution. The fusion of
feature maps adopts the operation of adding feature maps
instead of concatenating feature maps, reducing the pa-
rameter and computational complexity of the proposed
model and strengthening important features and suppress-
ing background information.

2.5. Distillation of intermediate layer features

Knowledge distillation[25] is a convolutional neural net-
work training algorithm based on the "teacher-student net-
work concept" proposed by Hinton in 2015, which is a
model compression method. The model with more pa-
rameters and a complex network structure is called the
teacher network and, the model with fewer parameters
and a relatively simple network structure is called the stu-
dent network. The neurons, intermediate feature layers,
network output values, etc. are called knowledge. The core
idea of knowledge distillation is to use a pre trained deep
learning model with a large number of parameters and
complex structures to assist in the training of lightweight
deep learning models. This means that the knowledge of
the teacher network is transferred to the student network,
thereby improving the generalization ability of lightweight
models. Therefore, the knowledge distillation can obtain
better network weights and improve the generalization
ability and detection accuracy of LSSD without increasing
the number of parameters and computational complexity.

We use SSD as a teacher network, which has stronger
feature extraction ability and can learn more feature rep-
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resentations of engine blade images. Its effective feature
layer contains richer edge and semantic information[26].
Transferring the feature representations learned from the
teacher network SSD as knowledge to the student network
LSSD can enhance the generalization ability of the LSSD
model and improve the detection accuracy of blade dam-
age. Figure 3 shows the structure diagram of a knowledge
distillation network based on intermediate layer features,
where SSD is a teacher network and LSSD is a student
network.

The loss function of LSSD network based on feature
layer distillation consists of two parts, namely student loss
and distillation loss. The calculation formula is as follows:

L(x, c, l, g) = Lloss (y, ŷ) + βLD(s, T) (3)

where Lloss represents the loss between the output of
the LSSD network and the real labels, i.e. the loss func-
tion of the SSD model. LD represents the distillation estab-
lished by the teacher network SSD and the student network
LSSD in the backbone network. β represents the distillation
weight, which is taken as 1 here.

The calculation formula for the distillation loss is as
follows:

MSE =
∑n

i=1
(
yi − y′i

)2

n
(4)

where n is the product of the width and height of the
feature layer, yi represents the pixel value of the adaptive
feature layer in the LSSD network, and y′ I represents the
pixel value of the effective feature layer in the SSD network.

3. Results and discussion

3.1. Dataset

The proposed LSSD is trained and validated on an aero-
engine blade image dataset. We take 15 frames as the inter-
frame difference of the borescope video and use the fixed
interframe difference method to extract key frames from
the borescope video to create a dataset. The dataset in-
cludes blade images with four types of damage: ablation,
burn-through, notch, and crack. After using image pro-
cessing methods (adding noise, adjusting brightness and
contrast, rotating image) for data augmentation and class
balancing, a total of 3135 blade images were obtained with
a resolution of 768 × 512, and the images were randomly
divided into a training set and a test set at a ratio of 8:2.

3.2. Experimental settings

The proposed LSSD model is implemented based on the Py-
torch framework using a PC platform with an i5-12600KF
CPU, and the graphics card is NVIDIA GeForce RTX 3060

(12G) with 16GB of memory. During the training process,
the hyper-parameters are set as follows: the training rounds
are set to 300, the batches are set to 8, the initial learning rate
is set to 0.002, the minimum learning rate is set to 0.00002,
and the learning rate decrease method is cosine learning
rate decrease. The SGD optimizer with a momentum coef-
ficient of 0.937 is used, and the weight decay parameter of
0.0005 is applied to prevent an overfitting and obtain better
results.

The commonly used evaluation indexes of target detec-
tion are: accuracy, recall, detection speed, mean average
precision (mAP), parameter number, calculational cost, etc.
The mAP combines two indicators, precision rate and re-
call rate, which can well reflect the average performance
of the model in different categories, so we take the mAP,
the number of model parameters, computational cost, and
detection speed as the evaluation indicators of the model
performance. The formulas are as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

Among them, TP is the number of positive samples that
the model correctly predicts as positive, FN is the number
of positive samples that the model incorrectly predicts as
negative, and FP is the number of negative samples that
the model incorrectly predicts as positive.

AP =
∫ 1

0
P(R)dR (7)

mAP =
∑K

i=1 APi
K

(8)

where K represents the number of blade damage cate-
gories, and AP represents the accuracy of the model for
each type of damage.

The number of model parameters determines the size of
memory or graphics space occupied by the model during
operation, and is used to measure the spatial complexity of
the algorithm.

Computational cost refers to the number of times a
model performs numerical operations such as convolution
and full concatenation, which determines the time required
for model detection. It is used to measure the time com-
plexity of the algorithm and is represented by Multiply
Accumulate Operations (MACs).

The detection speed refers to the number of video
frames or images that a model can detect per second. A
higher FPS indicates a faster detection speed of the model.
To meet the real-time detection requirements of borescope
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Fig. 3. Knowledge Distillation Network Structure Based on Middle Layer Features

videos, the detection speed of the model should be no less
than 24 frames per second.

3.3. Ablation experiment

This section will verify the effectiveness of some improve-
ments through ablation experiments. The improvement
methods include adjusting the feature fusion structure CA-
FPN, small-sized damage detection enhancement module
W-Inception, and setting initial values of anchor boxes in a
clustering manner.

Considering that the features of blade cracks and ero-
sion damage are relatively small, and the original SSD
compresses the image to 300x300, it may result in feature
loss. Therefore, adjust the input resolution of the network
to 768x512, which is the original image size. The training
images used in this article are all of the original image size.

1. Feature fusion module CA-FPN
In order to verify that the CA-FPN module can im-
prove the feature extraction ability of the LSSD model,
a comparative experiment was conducted on the test
set with and without the addition of the CA-FPN mod-
ule. The detection results are shown in Table 1. It
can be seen that the detection accuracy of the model
has been improved after adding the CA-FPN module,

Table 1. Comparison of damage detection results with or
without CA-FPN

Model mAP@0.5 Detection Speed
LSSD 79.30% 32 FPS

LSSD + CA-FPN 81.12% 31 FPS

and the mAP has increased by 1.82%. The CA-FPN
module is lightweight, so the detection speed almost
unchanged.

2. Small size damage detection enhancement module W-
Inception
Table 2 shows the detection results of the LSSD model
with and without the W-Inception module on the test
set. It can be seen that after adding W-Inception to
the LSSD model, the mAP increased by 1.2%, and the
AP for blade ablation, burn-through, notch damage,
and crack increased by 2.89%, 1.59%, 0.19%, and 0.14%,
respectively. The addition of the W-Inception module
expands the receptive field, and the shallow feature
map has richer local feature information, effectively
improving the detection accuracy of the LSSD model
for small-sized damage.

3. Comparative experiments on different anchor box set-
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Table 2. Comparison of damage detection results with or without W-Inception

Model Damage Class AP mAP@50

LSSD + CA-FPN

Ablation 85.51%

81.12%
Burn-through 87.06%

Notch 94.45%
Crack 63.87%

LSSD + CA-FPN +
Ablation 92.92%

82.32%
Burn-through 87.33%

W-Inception Notch 94.47%
Crack 69.99%

tings
The number of anchor boxes affects the parameter and
computational complexity of the model, and the size of
anchor boxes affects the convergence speed of model
training. Reasonable setting of the size and number
of anchor boxes is crucial for improving model per-
formance. Table 3 shows the detection results of the
LSSD model on the test set with different sizes and
quantities of anchor boxes. From the table, it can be
seen that the performance of the model is best when
setting 6 anchor boxes: the anchor boxes is set to [8, 7]
and [17, 22] when the feature map is 38 × 24, set to
[47, 30] and [39, 49] when the feature map is 38 × 24,
set to [69, 43] and [105, 60] when the feature map is
38 × 24. In this way, the model has the mAP of the
model is 82.32%, the number of parameters is 4.99 M ,
and the MACs is 3.54 G .

4. Comparative experiments on characteristic distillation
of the intermediate layer
Fig. 3 shows the experimental results of knowledge
distillation on the intermediate feature layer of the
LSSD model. After distillation training, the average
detection accuracy mAP of the LSSD model increased
by 2.34%, the ablation damage detection accuracy in-
creased by 1.6%, and the etching damage detection
accuracy increased by 7.9%. The detection accuracy
of burn-through and crack has not changed much,
which is reasonable because the teacher network al-
ready has lower detection accuracy for these two types
of damage. This also demonstrates the rationality
and effectiveness of the distillation strategy we have
adopted. Fig. 5 (a) shows the detection results of the
LSSD model before distillation, Fig. 5 (b) shows the
detection results after distillation, and Fig. 5 (c) shows
the detection results of the SSD network. It can be seen
that after knowledge distillation, the LSSD model re-
duces the missed detection rate of ablation and notch,
and the detection accuracy is improved.

Fig. 4. Experimental results of distillation based on
intermediate layer feature knowledge

(a) LSSD before (b) LSSD after (c) SSD
distillation distillation

Fig. 5. Comparison of detection results

3.4. Comparative experiments

In order to verify the performance of the lightweight object
detection model LSSD in borescope detection, we compare
it with Faster RCNN, RetinaNet, SSD, YOLOv4, and typical
lightweight object detection models, such as YOLOv3-tiny,
YOLOv4-tiny, YOLOv5-s, LSSD with Mobilenetv3-small
and Mobilenetv3-large backbone. The results are shown
in Table 4. Compared with Faster RCNN, SSD, RetinaNet,
YOLOv4, LSSD has significantly reduced parameter and
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Table 3. Comparison of time performance and performance with different superpixel methods

Number of Anchor box size on Anchor box size on Anchor box size on mAP Params MACs
anchor boxes feature map 38 × 24 feature map 19 × 12 feature map 10×6 /% /M /G

6
[8,7] [47,30] [69,43]

82.32 4.99 3.54[17,22] [39,49] [105,60]

8
[17,15] [56,48][50,76] [124,79][108,129]

78.42 5.03 3.56[23,18] [81,72] [185,111]

10
[8,7][17,22] [47,30][39,49] [84,82][123,133]

71.29 5.07 3.59[22,18][40,59] [46,80][61,52] [134,53]

12
[8,7][17,22] [85,32][58,50] [86,84][127,77]

70.76 5.11 3.62[22,18][40,59] [64,68][46,96] [189,68][104,131]

14
[8,7][17,22] [59,50][45,88] [124,80][103,134]

72.28 5.15 3.66[22,18][40,59] [75,66][88,90] [176,83][163,147]
[43,32] [139,54] -

16
[8,7][18,14] [44,98][83,59] [124,81][179,78]

74.31 5.19 3.69[23,18][41,36] [137,53][87,83] [102,140][123,136]
[40,60][58,49] [86,107] [165,148]

18
[8,7][18,14] [59,49][46,91] [125,80][99,143]

69.19 5.23 3.70[23,19][39,36] [69,67][90,82] [117,129][167,ca101]
[40,59][86,33] [159,60][90,110] [149,141][205,163]

computational complexity, and its detection speed also
meets the requirements of real-time detection; compared
with other lightweight models, the LSSD model has the
advantage of high detection accuracy.

Meanwhile, we have deployed our model on different
devices. Among different CPUs, the inference time is 200ms
on i5-12600KF and 395ms on i7-6700K. Among different
GPUs, the inference time is 10ms on RTX3060 and 55ms on
GTX1070. It can be seen that LSSD performs well and is
suitable for deployment in practical environments.

4. Conclusions

We propose a lightweight model LSSD to address the issues
of a large number of parameters, high computational com-
plexity, poor real-time detection, and difficulty in deploy-
ing on mobile detection devices in the field of borescope.
This model achieves real-time detection of blade damage
in borescope videos, and the following conclusions can be
drawn:

1. The introduction of the inverse residual structure has
lightweight the SSD backbone network and the K-
means clustering algorithm is adopted to optimize the
size and number of anchor boxes, which can reduce
the proposed LSSD model’s parameter and computa-
tional complexity, and improve its detection speed.

2. The addition of the improved feature fusion module
CA-FPN not only deeply integrates the semantic infor-
mation of the deep network with the edge information
of the shallow network, enhances the model’s detec-
tion ability for small and medium-sized targets, but

also promotes the model to more accurately identify
and locate blade damage. Embedding a small-scale
damage detection enhancement module consisting of
multi-scale dilated convolution and residual connec-
tions in the small-scale damage detection branch not
only enhances the perception ability of shallow feature
maps to global features, but also preserves important
information from input feature maps. The average
detection accuracy of the proposed model is improved
by 1.2%.

3. The knowledge distillation strategy of intermediate
layer features is used to distill and train the LSSD
model. The average detection accuracy was improved
by 2.34%, the ablation detection accuracy was im-
proved by 1.6%, and the notch detection accuracy was
improved by 7.9%.

4. The params of the LSSD model is 4.99M, the MACs is
3.541G, the detection speed is 32 FPS, and the average
detection accuracy on the blade damage image test
set is 84.66%. Compared with the SSD model, the
LSSD model has reduced the number of parameters
and computation by 79.3% and 88.42% respectively,
and the detection speed has increased by 16 frames
per second.
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