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ARTICLE INFO ABSTRACT

Due to the limited depth of field (DoF) of optical microscopes, wear particles of varying thicknesses and sizes can-
not be simultaneously presented in sharp focus within a single image, leading to potential misidentification of de-
focused particles in ferrograph analysis. To address this issue, an end-to-end unsupervised multi-focus ferrograph
image fusion model, WearlF, is proposed, which takes a sequence of images as input and outputs an all-in-focus
image. First, low-resolution focus weight maps are obtained using a bilinear downsampling operation and a
multi-scale dense focus feature extraction network (MDFFEN). These maps are then refined through a convolu-
tional guided filter network to generate high-resolution focus weight maps. Finally, the maps are weighted and
summated with the source images to generate an all-in-focus ferrograph image. Moreover, a joint content and
gradient based unsupervised loss function is designed to train WearlF, with attention to image structure, texture
details, and brightness balance. Experimental results show that WearlF retains more information from the source
images and produces fusion results that are more natural and realistic compared to current deep learning-based
fusion methods. The proposed model effectively reconstructs the morphology of defocused wear particles in fer-
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rograph images, providing a solid foundation for ferrograph image analysis.

1. Introduction

Wear particle analysis is a methodology that uses a high-gradient
magnetic field to separate wear particles from lubricating oil, deposits
them on a glass substrate, and provides qualitative and quantitative ex-
amination and analysis of ferrograph images taken through micro-
scopes [1]. It has been applied to wear monitoring and fault diagnosis
in equipment such as aerospace systems, mining equipment, and petro-
chemical machinery.

Ferrograph images not only provide general characteristics of wear
particles, such as type, number, and concentration, but also offer de-
tailed information on individual particles, including size, shape, and
morphology, all of which are critical for assessing the wear condition of
equipment. However, due to the limited DoF of optical microscopes,
particles of varying thicknesses cannot be simultaneously captured and
clearly presented in sharp focus within a single image, which may lead
to potential omission or misidentification of defocused particles. As
shown in Fig. 1, three sequential images are captured during vertical
movement of the microscope platform. It can be observed that Particles
1 and 2 are clearest in Images 1 and 2 respectively while the region con-
taining Particle 3 in Image 3 includes a sphere particle, which appears
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blurred in Images 1 and 2. This blurring could lead to misidentification
of particles, as sphere particles may be mistakenly recognized as part of
an oxide particle.

Achieving all-in-focus ferrograph images is therefore the primary
and crucial step in ferrograph analysis. Several studies have focused on
methods for reconstructing the morphology of defocused particles from
a single image. For instance, Xi [2] proposed a ferrograph image
restoration algorithm that extracted the edges of particles using the
Laplace operator, then generated a gain curve to magnify and adjust the
edges based on their distance from the center. Wu [3] developed a defo-
cus degradation model for particles using a large convolution kernel
CNN model, which minimized the error between the restored and true
images, mapping defocused images to focused ones. Although these
methods reconstructed ferrograph images by inferring the true mor-
phology of defocused particles from a single image, the three-
dimensional characteristics of the particles may be neglected, poten-
tially leading to inaccuracies. The fundamental principle in ferrograph
image reconstruction is to restore the defocused particle morphology as
accurately and comprehensively as possible.

To address this issue, we developed an automatic ferrograph image
acquisition platform, and proposed a microscope autofocus algorithm
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Fig. 1. An example of 3 frames of ferrograph images captured by moving the microscope platform in the vertical direction.

[4] in our previous work. A sequence of images is captured while the
microscope platform moves at a constant speed along the thickness di-
rection of the wear particles, comprehensively representing the three-
dimensional morphology of the particles. Based on the acquired se-
quence of images, multi-focus image fusion methodology is introduced,
which stitches the sharp regions from a sequence of images captured at
different DoFs within the same scene to generate a single all-in-focus
image. In contrast to single-image restoration methods, this approach
directly integrates the focused regions from the source images, effec-
tively restoring the true morphology of defocused particles.

Current multi-focus image fusion methods can be broadly catego-
rized into those based on transform-domains, spatial-domains, and
deep learning approaches. Transform-domain methods utilize domain
transformation theories, such as discrete wavelet transform [5] and
Laplacian pyramids [6], to design clarity evaluation metrics for fusion.
Spatial-domain methods assess clarity by analyzing pixel values, image
gradients, or image patch features, such as spatial frequency [7],
weighted gradients [8], and dense feature transformations [9].

In recent years, deep learning has been applied to multi-focus image
fusion owing to its end-to-end processing, automatic feature extraction,
and self-learning capabilities [10]. Ma [11] proposed an autoencoder-
based model, SESF-Fuse, for unsupervised image fusion, which inte-
grated deep features from the encoder using Active Level Set to gener-
ate initial decision maps, and applied consistency verification methods

to refine these maps for the final fusion results. Li [12] proposed the
DRPL model, which leveraged CNN networks to extract binary focus
masks from a pair of images and employed gradient and structure loss
functions to enhance texture features of the fused image. Ma [13] pro-
posed GACN, a model designed for the fusion of arbitrary numbers of
images, which incorporates CNN, guided filter, and boundary con-
straints to generate and refine decision maps, along with a decision cali-
bration module to facilitate fusion of multiple images. Zhang [14] pro-
posed MFF-GAN, which employed adaptive and gradient joint con-
straints in a generative adversarial network framework, of which the
generator predicted the fused results and the discriminator evaluated
whether they constitute true all-in-focus images. Ma [15] proposed the
SwinFusion model, which utilized the Swin Transformer for feature ex-
traction and global interaction, and was trained in an unsupervised
manner through joint structure, texture, and intensity loss functions.
Although these multi-focus fusion methods have demonstrated
promising results in natural image reconstruction tasks, several chal-
lenges remain when applying them directly to ferrograph image fusion.
In natural images, defocused regions tend to be well-defined with clear
boundaries as shown in Fig. 2; In contrast, ferrograph images involve
complex and diverse particle morphologies leading to scattered and iso-
lated defocused regions. Additionally, due to defocus diffusion effects
[16], the edges of defocused particles may extend outward, complicat-
ing the fusion process as shown in Fig. 3. Furthermore, most existing

Source image A

Source image B

fusion result

Fig. 2. An example of natural images.
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Fig. 3. An example of ferrograph sequence images.

models are primarily designed for the fusion of paired image, while the
three-dimensional morphology of a wear particle is best captured
through a sequence of images acquired by vertically moving the micro-
scope platform. Consequently, these models often rely on pairwise fu-
sion strategies when fusing a sequence of images, which compromises
the preservation of the particles' three-dimensional characteristics and
reduces fusion efficiency.

To address these challenges, we propose an end-to-end unsuper-
vised multi-focus ferrograph image fusion model, WearIF, which is ca-
pable of fusing an arbitrary number of images collected by vertically
moving the microscope platform into a single all-in-focus image. The
proposed model utilizes a multi-scale dense focus feature extraction
network (MDFFEN) and a convolutional guided filter network to extract
and refine particle focus weight maps. These maps are then fused
through weighted summation to generate the final fused image. Addi-
tionally, an unsupervised loss function that combines content and gra-
dient information is designed to train WearlF, optimizing image struc-
ture, texture details, and brightness balance.

2. End-to-end unsupervised multi-focus ferrograph image fusion
network

As shown in Fig. 4, the proposed model consists of a bilinear down-
sampler, an MDFFEN, a convolutional guided filter network, and a
weighted summation fusion module. First, the input sequence of high-
resolution images Xh = {x,", x,", ..., x,/'} is bilinearly downsampled to
obtain a sequence of low-resolution images XI = {x;}, x,}, ..., x,.
These low-resolution images are then passed through the MDFFEN to
predict the low-resolution focus weight map Al = {a;, @)}, ..., a,}.
Subsequently, Xh, X1, Al are fed into the convolutional guided filter net-
work to obtain the high-resolution weight map A={a,, a,, ..., a,}. Fi-
nally, the fused result Y is generated through a weighted summation, as
calculated below:

Y= z a ® x| (€Y
k=1

where ® represents the Hadamard product, and n denotes the total
number of image frames in the sequence.

2.1. Multi-scale dense focus feature extraction network MDFFEN

The MDFFEN is designed to extract features from the low-resolution
input sequence X1 and convert them into corresponding weight maps
Al. The network takes the sequence images, concatenated along the
batch dimension as input, and performs multi-scale semantic feature
extraction and fusion through an encoder module and a cascaded co-

prime atrous spatial pyramid pooling (CC-ASPP) module [17], thereby
capturing global semantic focus features. Subsequently, a series of oper-
ations - including a 3x3 convolution, a 1x1 convolution, and an
argmax operation - are applied to generate the low-resolution weight
map Al The structure of this network is depicted in Fig. 5.

The encoder module is composed of three stages with a total of six
encoding layers, as illustrated in Fig. 5(a). Stages 1 and 3 consist of
convolutional layers (7x7, 3x3, where r represents dilation rate),
batch normalization (BN) layers, and ReLU activation functions, with
the output channel c set to 24. These stages are responsible for extract-
ing shallow image features and integrating deeper semantic informa-
tion. Stage 2 comprises four ConvBlock layers (as shown in Fig. 5(b)),
which utilize atrous convolutions to expand the receptive field without
increasing the number of parameters or affecting spatial resolution.
Additionally, dense connection [18] is incorporated in this module, en-
abling the concatenation of outputs from previous layers to serve as in-
put for subsequent layers. This design promotes the reuse of shallow
focus features and mitigates the vanishing gradient problem. The spe-
cific parameters of the encoder module are summarized in Table 1.

The cascaded co-prime atrous spatial pyramid pooling (CC-
ASPP) module further performs multi-scale feature fusion on the out-
put of the encoder module. Compared to the traditional ASPP [19], CC-
ASPP introduces two key improvements: (1) The use of co-prime atrous
rates to increase the participation of pixels in feature computation, re-
ducing the Grid Effect; (2) The adoption of a cascaded structure to en-
large receptive field gaps between different branches, enabling better
extraction and fusion of features across multiple scales. Table 2 pro-
vides a comparison of the receptive fields between ASPP and CC-ASPP.
As observed, in the ASPP module, the receptive fields of the first four
branches exhibit only minimal variation, which limits its ability to ef-
fectively extract features from larger particles. In contrast, the CC-
ASPP module, through its cascaded structure, creates a substantial gap
in receptive field sizes between branches, facilitating the extraction of
both global and local features.

2.2. Convolutional guided filter network

We utilize the guided filter [20] to address the edge artifacts in-
duced by defocusing, as it effectively reconstructs the structure and
edge information from the input image using a guidance image, while
simultaneously performing smoothing and denoising. However, two
critical challenges emerge when directly applying the guided filter to
the ferrograph image fusion task: First, using source images as guidance
images may introduce redundant information, compromising the dis-
tinctiveness of particle edges and textures. Second, reliance on manu-
ally designed kernels limits the generalization capacity of the algo-
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Fig. 4. Structure diagram of WearlF.

rithm. To overcome these limitations, we propose a convolutional
guided filter network, incorporating the following key improvements:

(1) A guidance image is generated through a Reblur operation, as
illustrated in Fig. 6. The source image is subjected to two
iterations of Gaussian filtering to produce a blurred version,
after which the absolute difference between the blurred image
and source image is computed to create a difference map.
Within this map, sharp regions exhibit prominent activation
(highlighted by the red ellipse), while blurred regions
demonstrate negligible activation (indicated by the blue ellipse).
These maps are subsequently aggregated across all source
images to form the guidance image for the convolutional guided
filter network.

(2) Convolutional layers substitute manually designed kernels [21]
with the guided filter network being integrated into the
MDFFEN. Our WearlF model is optimized end-to-end at full
resolution to learn nonlinear guided filter kernels, thereby
enhancing the generalization ability of the model.

The guided filter process is detailed in Table 3, where f,{-) denotes a
r X r convolutional layer coupled with a ReLU nonlinear activation, and

feom(?) comprises two 1 x 1 convolutional layers interleaved withBN lay-
ers and ReLU activations. The input, intermediate, and output channels
are configured as 2, 8, and 1, respectively. The [-] operation signifies
channel-wise concatenation, and upsampling(:) represents to the up-
sampling operation.

2.3. Unsupervised Loss Function for Joint Content and Gradient

The proposed unsupervised joint content-and-gradient loss function
is formulated with three terms: the content loss L,,, the gradient loss
Lgrqa and the constraint term L,,,. These terms collectively ensure the
preservation of the overall image structure, the enhancement of texture
details of particle, and the maintenance of the image’s global brightness
distribution, respectively. The loss function is defined as follows:

L= Lcon + j'1 : Lgrad + ’12 ) Lmse (2)
where 4, and 4, are set to 0.5 and 0.3, respectively after a series of con-
trast experiments.

2.3.1. Content Loss term L,
The primary goal of multi-focus image fusion is to preserve the opti-
mally focused content from the sequence of images at each spatial loca-
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Fig. 5. Structure diagram of the MDFFEN.
Table 1 Table 2
Encoding module parameter table. Receptive fields of ASPP modules with different structures.
Encoding layer index 1 2 3 4 5 6 Conv_1x1 Conv.3x3 Conv.3x3 Conv.3x3 Image pooling
r=7 r=15 r=31
Kernel size 7x7 1x1 1x1 1x1 1x1 3x3
3x3 3x3 3x3 3x3 ASPP 69 83 99 121 256
Atrous rate 1 2 4 8 16 1 CC-ASPP 69 83 113 175 256
Number of output channels 24 24 24 24 24 24
Dense connection x v Y/ v v X
Size of receptive field 7x7 11x11 19x19 35x35 67X67 69X69
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Table 3
Steps of Guided Filter.

The process of Guided Filter

Input: weight map at low resolution Al;;
Guide Filter: difference map C generated by repeated blurring operations,
and input sequence images at high resolution Xj;
Output: weight map at high resolution Ay;

1: mean, = f,{C); mean; = fy{AlY; corry = fd{CRC); corry = fir (CRAL)

2: var, = corr, - mean,®meany; Cov,y; = COIT,; - Mean,®mean;

3: Al = feony( [cOVg, var,]); Bl = mean; - Al ®@mean,

4: A, = upsampling(AL); B, = upsampling(BL)

5: Wy = A®X;+By

tion in the fused image. To achieve this, the content loss function is de-
signed based on the Structural Similarity Index (SSIM) [22] and its en-
hanced variants [23’ 24], as follows:

Let {P,(i, j) | 1< k < K} denote the set of image patches extracted
from the spatial position (i, j) across multi-focus sequence images Xh.
For each patch Py, it is projected into an N2-dimensional space to obtain
a column vector Py, where N is the height/width of the patch. Following
the standard SSIM formulation, Py is decomposed into three indepen-
dent components: contrast component, texture structure component,
and luminance component, expressed as:

Py - Hpy
T P
[P |
-1 P ®3)
=‘ Py x ==+ Hp,
|
=c;p X s+
Where ||-|| denotes the l,-norm, Hp, is the mean luminance of the

patch,andp, =P, - u,, Tepresents the patch vector after mean subtrac-

tion. Thus, the contrast value ¢, texture structure vector s;, and lumi-

Py

nance value [, are defined as the scalar

5>

, the unit vector Py / ”Pk

and the scalar #p,, respectively,as derived above.

Let the target all-in-focus image be y, with its corresponding patch
centered at (i,j) denoted as p. Its three components ¢, §, and 7 are com-
puted from the component sets {c;, Cy, ..., Cx},{S1, S, ---, Sg}, and {l;, L,
v Iy of {P, | 1 <k <K}, as:

P =f. (cl,cz,

o) X fy (312800 -os5) + i (L bs - ) 4

Here, f,, f,, and f; represent the mapping functions for contrast, tex-
ture structure, and luminance components, respectively, from the
multi-focus patch sequence to the target all-in-focus patch. The follow-
ing criteria govern these mappings:

1) Contrast, which quantifies the intensity difference between the
brightest and darkest regions in an image, directly affects

2

—

3)

sharpness, detail representation, and visual appeal. Higher
contrast improves detail visibility, enhancing subject sharpness.
Thus, the output contrast is selected as the maximum contrast
among all source patches:

¢=f.(cj,cp5...,Cx) = mMax ¢, = max 5
felere x) max ¢ = max Py (5
Texture structure vector reflects the orientation of the patch in the

N?-dimensional vector space, where distinct textures correspond to
divergent orientations. Therefore, the output texture vector aligns
with the statistically dominant direction of all source patches,
computed via:

Zk’;WS <;k> Sk

§=———— ©

I

Where w; (-) denotes the [ -norm.

Luminance governs image brightness, critically influencing visual
perception. Excessive brightness causes overexposure (highlights
detail loss), while insufficient brightness induces shadow blurring.
Hence, the output luminance is a weighted average of all source
patches, defined as:

K
Zk=lwl (i L) i

Tt )

K
Zk:lwl (ki )

Here, y, is the global mean luminance of x;", I is the local mean
luminance of P, and w; (-) is a weight function combining global
and local luminance via a 2D Gaussian:

s=

3
=
sl

(m=7)" (=7
wl(ﬂk,lk):exp<— 22 R ®

1

Where o, and ¢; are photometric spread coefficients, set to 0.2 and
0.5, respectively; and r=128 for 8-bit images. The Content Loss

term L, is formulated as:
Legy = 1 = SSIMyr ({P,}.Y) ©
M
1 . .
SSIMyr ({P} Y) = o ; S({P ()}, Y () (10
(ZMA,M +C ) (20’A +C )
S({pe}y) = RV an

2 2 2 2
(Mﬁ+yy+C1) (Gﬁ+ay+C2)

where Hp and My represent the mean brightness values of the
desired all-in-focus image patches {p,} and the fused image
patches y, respectively. °p, Oy and °py represent the variances and
covariances of p and y. Here, C; and C, are two small stabilizing
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constants. The SSIM,; ranges within [0, 1], with higher values
corresponding to superior fusion quality.

2.3.2. Gradient Loss term Lg.q

To amplify texture details of wear particles, the gradient loss term
Lgqq is formulated using Laplacian edge detection. For each image in
the sequence Xh, the Laplacian gradient operator is applied to generate
a gradient image sequence {Ak}. The maximum gradient at each spatial
location is preserved to form the final gradient image A, defined as:

{4 =v({x}}) 12)
A= 151‘5w,12%)1(1,15k51< ({Ac@}) 13)

Where, V() represents Laplacian operator. Thus, the gradient loss
Lgrqq is defined as:

Lwa = —— DV (.]) = AP a4
i

2.3.3. Constraint Term L,

Solely optimizing content and gradient losses may cause WearlF
overemphasize regions with high clarity and rich detail, disregarding
global pixel distribution characteristics. This can lead to artifacts such
as amplified noise and unbalanced background brightness in the fused
image. To enhance model robustness and alleviate overfitting, we intro-
duce a mean-image constraint, derived by averaging the pixel values
across the input sequence images. This constraint ensures WearIF selec-
tively reconstruct relevant information while maintaining attention to
the global brightness distribution of the image. The constraint term L,
is defined as:

1 —
Lye=—=" 2, (Y - Y) (15)
?:%;4 16)

3. Model Training
3.1. Weighted Fusion Strategy

The YCbCr color space is adopted for ferrograph image fusion task,
as it better aligns with the perceptual characteristics of the human vi-
sual system. Within this space, the luminance component is fused using
our WearIF model, while the chrominance components are fused via a
weighted averaging strategy defined as:

K
B Zkzlwx~ (ka) - Cxy,

e .
Zk:lw" - (Cx)

w, (Cx) = ||Cxy =7 (18)

Cx x=b,r 17)

where Cx, denotes the C, or C, component of the k™ image in the se-
quence Xh; ||- ||; represents the L; norm. Finally, the fused luminance
and chrominance components are converted from the YCbCr back to
the RGB color space.

3.2. Model Training

As shown in Fig. 7, the experimental platform comprises a micro-
scope (XJZ-6), an XYZ motorized platform, a digital camera and a com-
puter. The XYZ motorized platform is connected to the computer, en-
abling software-controlled adjustment of displacement speed and posi-
tioning accuracy. A total of 579 sequences of multi-focus images with
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Fig. 7. Image acquisition platform.

varying wear particle distributions were acquired, forming a ferrograph
image fusion dataset partitioned into 300 training sequences and 279
testing sequences. For each sequence, only 32 frames with the highest
Laplacian gradient values were retained. Input images were resized to
910x512 pixels (high-resolution) and 228x128 pixels (low-
resolution) to mitigate GPU memory constraints during training while
maintaining computational efficiency.

The training hyperparameters for WearlF are configured as follows:
a batch size of 32 for each iteration, an initial learning rate of 0.0001
using the Adam optimizer, and 30000 total iterations. The network was
trained and validated on a workstation equipped with i7-8700 K CPU,
24 G RAM, and a NVIDIA RTX 2070 GPU. The total training duration
was approximately 8 hours, with the loss curve versus iterations illus-
trated in Fig. 8. It can be observed that the loss decreases rapidly within
the first 10000 iterations, demonstrating the model’s rapid acquisition
of global clarity features. Between 10000 and 20000 iterations, the loss
declines gradually, indicating fine-grained refinement of texture detail
representation. Beyond 20000 iterations, the loss plateaus, demonstrat-
ing model convergence.

4. Experimental Results
4.1. Evaluation Metrics

To accurately evaluate the performance of the proposed model, both
subjective and objective evaluation metrics are adopted. Subjective
evaluation relies on human visual perception to assess fusion quality
with a focus on criteria including details preservation, sharpness, con-
trast fidelity, and perceptual naturalness. Objective metrics provide a
quantitative assessment of the fusion results. Five objective metrics are
adapted and extended for multi-focus fusion tasks.

Let the input sequence images be S = {S1, S2, ...}. The extended
formulations for multi-image fusion are defined below, and the origin
equations are shown in the relevant references:

(1)The image feature-based evaluation metric Q, [25]

N M L
> XY 0wy [gs )
S;eSx=1y=1

= N M L
Z Z [gsi (x, Y)]

=
€S x=1y=

19

N

(2)The structure similarity-based evaluation metric Q, [26]
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Fig. 8. Loss curve during the Training Process of WearlIF.
sult. For instance, from the 7" to the 17™ frame, the focal quality of the
0,= ﬁ Zwery (20) Chain particles improves progressively. In the red bounding box region,

z A; () SSIM (S, F|w) L SSIM, 0 (W) > 0.75
0, =4 i=l 21)

max {SSIM (S, F|w) |i =1,2,...n},88IM,, .0, (W) < 0.75

(3)The human visual perception-based evaluation metric Q, [27]

Y. Cs (@) - Qs (a,b)
0cab == 22)
o Y ¢52 (@.b)

S;es

(4)The information-theory-based evaluation metric FMI [28]

Irs,
FMIE =y —— 23
F Slgy HF + HS,v ( )

(5)The correlation-based metric SCD [29]

_1y :
SCD =~ Z r (D S;) 24

i=1
4.2. Evaluation Results

Fig. 9 depicts the fusion process for a sequence of ferrograph im-
ages. Panel (a) presents 5 representative frames from a sequence, and
Panel (b) shows the corresponding weighted focus maps. In these maps,
regions with higher intensity values (brighter pixels) indicate areas of
superior focus in the respective frames, which dominate the fused re-

as highlighted by the red ellipses, the right, middle, and left portions of
a particle achieve optimal clarity in the 7%, 12% and 17 frames, re-
spectively. These regions exhibit maximum activation in the focus
maps, confirming their dominant contribution to the particle’s repre-
sentation in the fused image.

From the 22" to the 27™ frame, the sphere particle (left) gains
sharpness, peaking in the 26" frame, as shown in the red box areas. The
weighted focus map reveals a centripetal activation pattern, where the
region of interest is gradually highlighted from the periphery toward
the center,culminating in peak activation at the 26™ frame. Further-
more, the elevated activation at the lower-left edge of the particle in the
27" frame suggests this subregion predominantly defines the sphere
particle’s morphology in the final fusion.

The fused result is shown in Panel (c), which demonstrates visually
coherent fusion with wear particles of diverse thicknesses retained si-
multaneously in a single image. Critically, the texture fidelity, morphol-
ogy integrity, and diagnostic features of the particles are preserved, ful-
filling the requirements for wear particle analysis.

Fig. 10 presents the testing results of WearlF applied to four fer-
rograph sequence images, each exhibiting distinct particle distribu-
tions, brightness levels, and contrast. From a subjective evaluation
perspective, the fusion results achieve overall clarity, with contrast
and brightness aligned with human visual perception. Moreover, tex-
ture details of wear particles are well-retained without noticeable
distortion or artifacts.

A key strength of WearlF lies in its flexibility to adjust the number of
input frames for more comprehensive fusion. Taking Fig. 11(a) as an ex-
ample, when processing 32 input frames, the central region of the parti-
cle (arrow-marked) remains defocused across all frames, resulting in
blurring in the fused output. In contrast, when the input is increased to
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Fig. 9. the process of image fusion.
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{a) source images (b) focus weight maps

{¢) fusion result

Fig. 9. (continued)
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(a) (b)
(c) (d)
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Fig. 10. fusion result of WearlF on four sequences of ferrograph images.

(a) (b)

Fig. 11. Fusion results of WearlF with a flexible number of input ferrograph images.

60 frames (Fig. 11(b)), the entire Block particle is rendered with en-
hanced clarity, preserving texture, morphology, and critical features.
This validates WearIF’s capability to extract focused content from vari-
able-length input sequences, highlighting robust generalization. How-
ever, comparison between Panels (a) and (b) shows that increasing in-
put frames may induce subtle artifacts, manifested as annular pseudo-
boundaries around particles due to defocus diffusion. Furthermore, ac-
cumulation of defocused gradients in guidance images compromises the
guided filtering process, leading to performance degradation

The WearlF model was quantitatively evaluated using objective
evaluation metrics, achieving scores of 0.4258 (FMI), 0.5319 (Qg),
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0.6707 (Qy), 0.5953 (Q),and 0.2573 (SCD). Additionally, it attained a
processing speed of 0.53 s/frame, demonstrating efficient fusion perfor-
mance.

5. Ablation study analysis
5.1. Comparison of different guided filter network structures
To investigate the impact of different guided filter methods on the

fusion performance, three widely-used guided filter variants are com-
pared. Method 1 involves replacing the convolutional guided filter net-
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work with bilinear upsampling operation. Method 2 utilizes the input
image as the guidance image for the proposed guided filter network.
Method 3 applies the traditional guided filter algorithm while keeping
the guidance image unchanged. The fusion results are shown in Fig. 12
and quantified in Table 4. Panels (a) - (c) are the result images corre-
sponding to method 1 to 3, and panel (d) displays the result image of
WearlF. Red boxes highlight the magnified regions of representative
wear particles. Quantitative and qualitative evaluations demonstrate
that WearlF achieves superior performance, delivering optimal image
clarity, contrast, and edge/texture preservation. Objectively, it excels
in extracting critical information (highest FMI), preserving more image
features (peak Qg), retaining structural fidelity (maximized Qy), align-
ing better with human visual perception (best Q.), and maintaining
source correlation (highest SCD). Method 1 produces the weakest fu-
sion results, exhibiting severe texture loss on particles and significant
artifacts around edges. Its objective evaluation results, particularly the
near-zero SCD, highlight the model's inability to effectively extract and
preserve structure and feature information due to the lack of a guided
filter network. Method 2 yields a decline in overall clarity and contrast,
with noticeable texture loss on particles and amplified edge artifacts,
resulting in lower objective evaluation results. Method 3 performs mar-
ginally worse than WearlF but retains acceptable clarity, contrast and
texture details. However, its evident artifacts around sphere particles

and lower objective scores validate the advantage of convolutional lay-
ers over manually defined mathematical operations in learning nonlin-
ear features via the guided filter network.

5.2. Comparison of different loss functions

To evaluate the impact of individual loss terms on the training re-
sults, three ablation studies are conducted: (1) Ablation 1, without the
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constraint term; (2) Ablation 2, without the gradient loss term; and (3)
Ablation 3, without the content loss term. The results are presented in
Fig. 13 and Table 5, where Panels (a) - (c) correspond to the results of
Ablation 1 to 3, and Panel (d) displays the result of WearIF.

In Ablation 1, texture details retained on particles without edge arti-
facts, and the objective evaluation results of FMI, Q,, Q, and SCD re-
main marginally lower than those of WearlF, indicating robust fusion
capability. However, the global brightness distribution is imbalanced,
with lower Qg score, suggesting the MSE constraint is critical for
brightness consistency.

In Ablation 2, the global brightness is balanced with artifact-free
edges. The result of Qg is slightly inferior to WearlIF’s, but texture
degradation occurs, particularly in Q, performance. This underscores
the gradient loss term as essential for learning gradient-driven texture
features critical to detail preservation.

In Ablation 3, the fused result exhibits imbalanced brightness and
contrast, substantial texture loss, and pronounced edge artifacts, yield-
ing the poorest visual performance and objective performance (near-
zero SCD). This confirms the content loss L., as indispensable for pre-
serving structural integrity and perceptual features via SSIM-based
brightness, gradient, and contrast modeling.

Collectively, these results demonstrate that the combined loss terms,
particularly the SSIM-based content loss, play a crucial role in optimiz-
ing the model for balanced brightness, textural fidelity,and structural
coherence.

5.3. Comparison of different feature extraction network structures
To investigate the impact of different MDFFEN architectures on fu-

sion performance, five ablation experiments are conducted. The results
are summarized in Table 6,where the second-best performance for each

(a) fusion result of bilinear upsampling structure (b) fusion result of source images as guidance image

(c) fusion result of traditional guided filter

{d) fusion result of WearlF

Fig. 12. Fusion result images with different guided filter methods.
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Table 4
Objective evaluation results of different guided filter methods.
Index Structure FMI Q, Q Qup SCD
1 bilinear upsampling 0.0745 0.1781 0.1165 0.1940 0.0804
Source images as guidance 0.1531 0.2554 0.3853 0.3312 0.1031
image
3 Traditional guided filter 0.3255 0.4259 0.4945 0.5193 0.1759
4 WearlF 0.4258 0.5319 0.6707 0.5953 0.2573

metric is marked with an asterisk (*). The analysis reveals that the in-
clusion or exclusion of the three proposed structures significantly af-
fects the fusion quality, yielding either optimal or suboptimal perfor-
mance (see Experiments 1 and 5).

In Experiment 2 (only incorporating atrous convolution), the net-
work achieves the second-best Q, and Q, scores, matching WearlF’s per-
formance. This validates that atrous convolution enhances global struc-
tural and semantic feature extraction via expanded receptive fields.

In Experiment 3 (solely using dense connections), the network
achieves second-best FMI and Q,, scores, indicating that dense connec-
tion improves inter-layer information flow, thereby boosting human-
aligned perceptual quality.

In Experiment 4 (solely using CC-ASPP module), the network ranks
second in SCD, demonstrating that CC-ASPP mitigates grid effects while
enlarging receptive fields, enabling joint global-local feature learning
for multi-scale fusion.

6. Comparison with Other multi-focus image fusion algorithms

To validate the superiority of WearIF in multi-focus ferrograph im-
age fusion, we compared it with five deep learning-based multi-focus

{a) fusion result of ablation 1

{c) fusion result of ablation 3
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image fusion models. All comparisons adopt a pairwise serial fusion
strategy, with network architectures and parameters initialized from
original references and fine-tuned on the aforementioned dataset. The
fusion results for two ferrograph sequences are visualized in Fig. 14 and
quantified in Table 7.

(1) WearlF achieves the best performance across multiple metrics,
delivering optimally balanced contrast/brightness and sharp
preservation of texture and morphology details on wear particles.
It effectively suppresses defocus-induced artifacts while faithfully
retaining source image information. However, non-particle
regions exhibit slight texture suppression, attributable to the
convolutional guided filter’s prioritization of particle regions and
background smoothing via the loss constraint term, which
marginally degrades background detail.

Generative fusion models such as MFF-GAN [14] and
SwinFusion [15] implicitly learn the inherent fusion rules from
multi-focus sequence images to directly synthesize all-in-focus
images. While generally clear with well-preserved particle
textures and no grid artifacts, the fusion results of these models
suffer from structural distortions and spurious features. For
instance, MFF-GAN introduces excessively high contrast,
resulting in noise and overly enriched texture details that
highlight unnecessary background boundaries (e.g., Fig. 14(a)).
Similarly, SwinFusion exhibits content distortion, such as black
shadows near the center of the sphere particle in Fig. 14(b).
These flaws stem from implicit fusion rules in generative fusion
models which makes the fusion process less controllable and
more sensitive to noise, meanwhile serial fusion strategy further
exacerbates these problems. Furthermore, they underperform

(2)

{b) fusion result of ablation 2

{(d) fusion result of WearlF

Fig. 13. Fusion results after training with different loss functions.
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Table 5

Objective evaluation results after training with different loss functions.
Experiment MSE Grad SSIM FMI Qg Qy Qy SCD
Ablation 1 \/ \/ 0.3937 0.4478 0.5269 0.4214 0.1658
Ablation 2 +/ v 03724 03565 0.4876 0.4673 0.1462
Ablation 3 \/ \/ 0.2332  0.3027 0.3134 0.3012 0.0127
WearlF v v v  0.4258 0.5319 0.6707 0.5953 0.2573

WearlF in objective evaluation metrics, processing speed and
computational efficiency.

Decision Map-Based Fusion Models like SESF-Fuse [11], DRPL
[12], and GACN [13] generate binary decision maps to select in-
focus pixels for fusion, and then combines them with the source
images to generate the all-in-focus fusion results. They produce
clear and natural fusion results, with well-preserved texture,
structure and content of particles from source images. However,
significant artifacts at boundaries of particles are observed in
some fused results. For instance, SESF-Fuse and DRPL models
introduce circular black artifacts around sphere and oxide
particles (Fig. 14(c) and (d)), since their binary decision maps are
highly sensitive to gradient edges of defocused particles. In
contrast, GACN mitigates circular artifacts via a guided filtering
algorithm and decision map calibration strategy (Fig. 14(e)).
Table 7 shows that while SESF-Fuse and DRPL yield objective
evaluation results and processing speeds comparable to WearlF,
there remains a slight performance gap. GACN outperforms
WearlF in the Q, and SCD metrics, indicating higher correlation
with the source images and greater information retention.
However, GACN fails to fully resolve the defocus-induced artifact
issue, and slower processing limit its practicality.

3

WearlF outperforms current multi-focus image fusion models in
terms of fusion quality, maintaining a balance between clarity, detail
retention, and processing speed while mitigating defocus artifacts more
effectively.

Optics and Lasers in Engineering xxx (xxxx) 109155
7. Conclusion

In this study, we proposed a novel end-to-end unsupervised
weighted multi-focus image fusion model for ferrograph images, named
WearlF. The model integrates a multi-scale dense focus feature extrac-
tion network MDFFEN with a convolutional guided filter network to ef-
fectively extract and refine the focus weight maps of wear particles
from both low- and high-resolution sequence images. The model is opti-
mized using a joint content and gradient loss function, which facilitates
the preservation of the overall image structure, enhances texture de-
tails, and ensures balanced brightness in the fused result. Experimental
results demonstrate that WearlF outperforms existing multi-focus fu-
sion methods in terms of image quality, preserving a greater amount of
detail and providing more accurate representations of particle morphol-
ogy. The fusion results exhibit improved retention of texture, shape,
and brightness balance, which is critical for precise wear particle analy-
sis. Furthermore, WearIF demonstrates high computational efficiency,
making it highly suitable for practical applications in wear monitoring
and fault diagnosis.
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Table 6
Objective evaluation results of different feature extraction network architectures.
Index Atrous Dense connection CC-ASPP FMI Q Q, Qup SCD
convolution

1 0.3695 0.4596 0.5562 0.4741 0.2080
2 \/ 0.4079 0.5204* 0.6337* 0.5398 0.2144
3 0.4146* 0.5017 0.6038 0.5503* 0.2136
4 \/ 0.3993 0.5013 0.5989 0.5374 0.2398*
5 Y/ v 0.4258 0.5319 0.6707 0.5953 0.2573
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{a) The fusion result of MFF-GAN

{b) The fusion result of SwinFusion

(¢) The fusion result of SESF-Fuse

Fig. 14. Results of different multi-focus image fusion algorithms.
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{d) The fusion result of DRPL

{¢) The fusion result of GACN

(1) The fusion result of WearlF

Fig. 14. (continued)

Table 7
Objective evaluation results of different multi-focus image fusion algorithms.
Method FMI Q, Q Quwp SCD Time(s)
MFE-GAN 0.3157 0.4547 0.3968 0.3272 0.1782 2.45
SwinFusion 0.3018 0.4291 0.2718 0.4932 0.2055 2.76
SESF-Fuse 0.3309 0.4953 0.5640 0.4779 0.1987 0.62
DRPL 0.3840 0.3986 0.4386 0.5311 0.2420 1.52
GACN 0.4099 0.5371 0.6579 0.5716 0.2619 1.81
WearlF 0.4258 0.5319 0.6707 0.5953 0.2573 0.53
References
[1] Roylance B J. Ferrography—Then and now. J Tribol Int 2005;38(10):857-62.

[2]
[3]

Xi W, Wu T, Yan K, et al. Restoration of online video ferrography images for out-
of-focus degradations. J Video Proc 2018;2018(1).

Wu H, Kwok N M, Liu S, et al. Restoration of defocused ferrograph images using a
large kernel convolutional neural network. Wear 2019;426:1740-7.

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

[13]

Liu X, Zhang L, Leng S, et al. An autofocus algorithm for fusing global and local
information in ferrographic images. Chin Opt. 2024;17(2):423-34.

Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the Wavelet
transform. Graph Models Image Proc 1995;57(3):235-45.

Burt P J, Adelson E H. The laplacian pyramid as a compact image code. IEEE
Trans Commun 1983;COM-31(4):532-40.

Shutao L, Kwok J T, Yaonan W. Combination of images with diverse focuses
using the spatial frequency. Inf Fusion 2001;2(3):169-76.

Zhou Z, Li S, Wang B. Multi-scale weighted gradient-based fusion for multi-focus
images. Inf Fusion 2014;20:60-72.

Liu Y, Liu S, Wang Z. Multi-focus image fusion with dense SIFT. Inf Fusion 2015;
23:139-55.

Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw
2015;61:85-117.

Ma B, Zhu Y, Yin X, et al. SESF-Fuse: an unsupervised deep model for multi-focus
image fusion. Comput Sci Eng 2021;33(11):5793-804.

LiJ, Guo X, Lu G, et al. DRPL: deep regression pair learning for Multi-focus image
fusion. Ieee T Image Proc 2020;29:4816-31.

Ma B, Yin X, Wu D, et al. End-to-end learning for simultaneously generating
decision map and multi-focus image fusion result. Neurocomputing 2022;470:
204-16.


http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0001
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0002
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0002
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0003
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0003
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0004
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0004
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0005
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0005
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0006
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0006
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0007
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0007
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0008
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0008
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0009
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0009
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0010
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0010
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0011
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0011
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0012
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0012
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0013
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0013
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0013

X. Liu et al.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Zhang H, Le Z, Shao Z, et al. MFF-GAN: an unsupervised generative adversarial

network with adaptive and gradient joint constraints for multi-focus image fusion.

Inf Fusion 2021;66:40-53.

Ma J, Tang L, Fan F, et al. SwinFusion: cross-domain long-range learning for
General image Fusion via Swin Transformer. leee-Caa J Autom Sin. 2022;9(7):
1200-17.

Yin X, Ma B, Ban X, et al. Defocus spread effect elimination method in multiple

multi-focus image fusion for microscopic images. Chin J Eng 2021;43(9):1174-81.

Liu X, Cheng L, Chen G, et al. Recognition of fatigue and severe sliding wear
particles using a CNN model with multi-scale feature extractor. Ind Lubr Tribol
2022;74(7):884-91.

Huang G, Liu Z, Maaten L V D, et al. Densely connected convolutional networks.
In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2017. p. 2261-9.

Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans Pattern Anal Mach Intell 2018;40(4):834-48.

He K, Sun J, Tang X. Guided image filtering [C]. In: Proceedings of the 11th
European Conference on Computer Vision; 2010. p. 1. +.

Wu H, Zheng S, Zhang J, et al. Fast end-to-end trainable guided filter. In:
Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern

17

[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

Optics and Lasers in Engineering xxx (xxxx) 109155

Recognition (CVPR); 2018. p. 1838-47.

Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error
visibility to structural similarity. Ieee T Image Proc 2004;13(4):600-12.

Ma K, Zeng K, Wang Z. Perceptual quality assessment for Multi-Exposure image
fusion. Ieee T Image Proc 2015;24(11):3345-56.

Ma K, Duanm Z, Zhu H, et al. Deep guided learning for fast Multi-exposure image
fusion. Ieee T Image Proc 2020;29:2808-19.

Xydeas C S, Petrovic V. Objective image fusion performance measure. Comput
Sci Eng 2000;36(4):308-9.

Li S, Hong R, Wu X. A novel similarity based quality metric for image fusion. In:
Proceedings of the International Conference on Audio, Language and Image
Processing; 2008. p. 167-72.

Chen Y, Blum R S. A new automated quality assessment algorithm for image
fusion. Image Vision Comput 2009;27(10):1421-32.

Haghighat M, Razian M A. Ieee. Fast-FMI: non-reference image fusion metric. In:
Proceedings of the 8th IEEE International Conference on Application of
Information and Communication Technologies (AICT); 2014. p. 424-6.

Aslantas V, Bendes E. A new image quality metric for image fusion: the sum of
the correlations of differences. Aeu-Int J Electron Commun 2015;69(12):160-6.


http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0014
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0014
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0014
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0015
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0015
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0015
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0016
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0016
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0017
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0017
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0017
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0018
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0018
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0018
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0019
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0019
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0019
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0020
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0020
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0021
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0021
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0021
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0022
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0022
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0023
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0023
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0024
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0024
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0025
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0025
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0026
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0026
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0026
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0027
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0027
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0028
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0028
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0028
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0029
http://refhub.elsevier.com/S0143-8166(25)00340-9/sbref0029

	End-to-end deep guided learning for reconstruction of all-in-focus ferrograph image
	1. Introduction
	2. End-to-end unsupervised multi-focus ferrograph image fusion network
	2.1. Multi-scale dense focus feature extraction network MDFFEN
	2.2. Convolutional guided filter network
	2.3. Unsupervised Loss Function for Joint Content and Gradient
	2.3.1. Content Loss term Lcon
	2.3.2. Gradient Loss term Lgrad
	2.3.3. Constraint Term Lmse


	3. Model Training
	3.1. Weighted Fusion Strategy
	3.2. Model Training

	4. Experimental Results
	4.1. Evaluation Metrics
	4.2. Evaluation Results

	5. Ablation study analysis
	5.1. Comparison of different guided filter network structures
	5.2. Comparison of different loss functions
	5.3. Comparison of different feature extraction network structures

	6. Comparison with Other multi-focus image fusion algorithms
	7. Conclusion
	CRediT authorship contribution statement
	References


	fld68: 
	fld69: 
	fld98: 
	fld99: 
	fld118: 
	fld130: 
	fld138: 
	fld145: 
	fld157: 
	fld171: 
	fld178: 
	fld182: 
	fld187: 
	fld188: 
	fld201: 
	fld214: 
	fld232: 
	fld262: 


