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A B S T R A C T

A two-dimensional elastohydrodynamic numerical simulation is conducted for surface textured sliding bearings
with relatively soft material. The pressure distribution in the film and the elastic deformation of the textured
surfaces are obtained through a simultaneous solution of the two-dimensional Reynolds equation and the
equation of the elasticity for the textured surface. The results show that the small elastic deformation has
significant influence on the load carrying capacity and pressure distribution, and leads to a drastic decrease in
load capacity at thin film hydrodynamic lubrication. A parametric analysis is conducted to obtain the optimal
surface texture parameters in term of load carrying capacity.

1. Introduction

Surface texturing is proved to be an efficient method to enhance the
tribological properties of lubricated sliding bearings and mechanical
seals both experimentally and theoretically [1–6]. It is widely accepted
that the advantageous effect of surface texturing on fluid lubrication
properties is attributed to the creation of an additional hydrodynamic
lift, which primarily depends on shape, density, depth and pattern of
dimples [7].

Most of texturing parameters that affect the overall contact
lubricant performance have been extensively investigated through
theoretical method. In order to obtain the optimal load capacity of
the sliding bearing, Etsion et al. [1,8] systematically investigated the
effect of texturing parameters, including diameter, texture density and
the dimple depth over diameter ratio. In the more generalized
optimization studies by Nanbu [9] and Rahmani [10], infinitely long
parallel sliders with different texture bottom shapes were analysed. Yu
et al. [11] developed a theoretical model to investigate the effect of
textural shapes and orientations on hydrodynamic pressure between
conformal contact, ellipses placed perpendicular to sliding direction
showed the best performance of load-carrying capacity and this was
experimentally proved in a later study [12]. Han and Ge [13]
numerically studied the hydrodynamic lubrication properties of the
textured surface with asymmetric micro-dimples and found the asym-
metric micro-dimples can obtain larger load-carrying capacity than a
symmetric rectangular micro-dimples. Khonsari et al. [14,15] investi-
gated fully textured parallel slider bearings by developing a numerical

texture shape optimization approach based on the Successive
Quadratic Programming (SQP) algorithm and they found that chev-
ron-like shape is the optimal dimple shapes.

Experimental researches also have been extensively conducted.
Etsion et al. [16,17] experimentally validated the optimal texturing
parameters obtained by their previous numerical modeling. Wang et al.
[18,19] experimentally studied surface textured silicon carbide sliding
in water, and found out the optimal texture area density in term of
friction reduction and load carrying capacity respectively. Meng et al.
[20,21] directly observed the cavitation phenomenon inside surface
textured thrust bearings by using high-speed camera, they found that
cavitation shape and area varied with texture patterns, and confirmed
that Jakobsson - Floberg - Olsson (JFO) models are more valid for the
prediction of cavitation morphology compared with Reynolds model.

In aforementioned researches, surface textures were applied mostly
for the stiff materials such as steel and ceramics, which are usually
assumed as rigid materials in simulation. On the other hand, relatively
soft materials become increasingly used in tribo-contacts, such as joint
prosthesis and engineering seals. Optimization is more complicated
when the materials became softer. Zhang et al. [22,23] studied the
effect of surface texture on friction reduction between the contact of
Ultra High Molecular Weight Polyethylene (UHMWPE) and steel, the
optimal dimples area density depended on whether the dimples were
on the surface of UHMWPE or steel. The dimples textured on the
surface of UHMWPE with an area density ranging from 16% to 30%
can effectively reduce friction, while the optimal density was in the
range of 5–15% if the dimples are fabricated on the surface of steel.
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Wang [24] attributed this difference to the deformation of the soft
material, and proposed that the deformation should also be responsible
for the difference of the optimal values of area density between that
obtained by theoretical models and that by experiments.

In order to accurately predict the performance of the surface
textured slider bearings with relative soft materials, the effect of elastic
deformation should be included in the numerical simulation. Etsion
[25] included the effect of elastic deformation in modeling of surface
texturing in soft elasto-hydrodynamic lubrication. Yagi et al. [26,27]
developed an elastohydrodynamic numerical simulation which takes
into account elastic deformation of the bounding surface for one-
dimensional step bearings, and the results showed that a small elastic
deformation of less than 100 nm leads to a sharp decline in lubricant
pressure from 120 MPa to 5 MPa. Shinkarenko et al. [28,29] developed
a numerical model for rubber seal against rigid rod, either of the
surfaces was textured. The pressure distribution in fluid film and the
elastic deformation of the elastomer were obtained by ANSYS software.
The elastic deformation was showed to exceed the initial clearance by
almost threefold and became the key component of lubricant film
thickness.

In the present study, a two-dimensional elastohydrodynamic nu-
merical simulation that takes into account the elastic deformation of
the surface and the viscosity-pressure effect of the lubricant is
conducted for surface textured sliding bearings. The bearings consist
of textured polymer materials and smooth steel. The numerical
modeling investigates the influence of elastic deformation on lubrica-
tion property emphatically, and the results are compared with those
obtained from the rigid solution which ignores the small elastic
deformation in thin film lubrication. Meantime, a parametric analysis
is conducted to obtain the optimal surface texture parameters in term
of load carrying capacity.

2. The model

The schematic diagram of surface textured sliding bearings is
presented in Fig. 1. The numerical model consists of a steel plate with
a smooth surface sliding at constant velocity of U relatively to a
stationary polymer plate with surface texture in form of dimples. The
two surfaces are separated by a layer of lubricant with initial thickness
of h0.

Fig. 1(a) presents a geometrical model of the upper stationary

textured surface. The dimples in the form of cylinder are uniformly
distributed on the surface with an area density Sa. Each cylindrical
dimple has a base radius rp and depth hp (see Fig. 1b) and is located in
the center of an imaginary square cell of sides L×L. The dimple area
density and radius are related to the square area by the following
formula：

L r π
S

= p
a (1)

The total computational domain of the upper fixed textured plane in
the simulation model lie in a square cell of sides 3 L×3 L. The x-y
coordinates are established on the upper stationary textured plane as

Nomenclature

h film thickness
h0 initial film thickness
hp dimple depth
p local pressure of fluid film
p0 ambient atmospheric pressure
q total mass flow rate
qc Couette mass flow rate
qp Poiseuille mass flow rate
rp radius of the dimple
ρ density of lubricant
ρ0 density of lubricant at p=p0
ρ dimensionless density of lubricant
η viscosity of lubricant
η0 viscosity of lubricant at p=p0
η dimensionless viscosity of lubricant
x coordinate along with sliding direction
y coordinate perpendicular to sliding direction
s, t local coordinates
S,T dimensionless local coordinates
δ elastic displacement of textured surface

ν1, ν2 Poisson's ratio of contact surfaces
α pressure-viscosity coefficient of lubricant
A contact area
Dij

kl deformation matrix
E1, E2 Young's modulus of contact surfaces
E′ equivalent elastic modulus of contact surfaces
P dimensionless local pressure of fluid film
Pav dimensionless average pressure
H dimensionless film thickness
L side length of imaginary square cell
U sliding velocity
X dimensionless coordinate along with sliding direction
Y dimensionless coordinate perpendicular to sliding direc-

tion
(X0,Y0) rupture local of oil film
Sa area density
W dimensionless load carrying force
Ω dimple region
Ω′ total computational domain of textured plane

△ dimensionless elastic deformation of textured surface.

Fig. 1. Schematic illustration of the model: (a) geometry of textured surface; (b) working
schematic of textured sliding bearing.
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show in Fig. 1(a).
The two-dimensional Reynolds equation for the local pressure in

fluid film is expressed as follows:

x
ρh
η

p
x y

ρh
η

p
y

U
x

ρh∂
∂

∂
∂

+ ∂
∂

∂
∂

= 6 ∂
∂

( )
3 3⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (2)

where x and y are Cartesian coordinates (see Fig. 1); h is local film thickness;
p is the local pressure in lubricant film; ρ and η are the density and viscosity of
lubricant respectively; U is the relative velocity between contact surfaces. A
dimensionless form of the Reynolds equation can be written as follows:
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during the above normalization of the problem parameters, rp is
dimple radius; h0 is the initial film thickness as showed in Fig. 1(b); p0
is ambient atmospheric pressure; ρ0 and η0 are the density and
viscosity of lubricant at p=p0, respectively.

The film thickness h, considering the elastic displacement of upper
textured surface, can be formulized as follows:

h
h h δ x y

h δ x y
=

+ + ( , ) ∈ Ω′
+ ( , ) ∉ Ω′
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0
⎪
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where δ is the elastic displacement of upper fixed textured surface, Ω′
represents dimple region of the upper fixed textured plane.

The elastic deformation of the textured polymer surface can be
mathematically derived according to Boussinesq's analytical model
[30] based on the assumption of semi-infinite body theory and is
expressed as follows:
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where E′ is equivalent elastic modulus, s and t are local coordinates, E
and ν are Young's modulus and Poisson's ratio of the contact surfaces
respectively, Ω represents total computational domain of the upper
fixed textured surface.

The dimensionless forms of the above equations then can be
expressed as follows:
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The dimensionless density and viscosity of lubricant developed by
Dowson et al. [31,32] are expressed as follows:
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where α is the pressure-viscosity coefficient of lubricant with the unit of
GPa.

The dimensional equations of the mass flow rate are expressed as

follows:

q q q= +c P (13)

q ρU h q ρ h
η

dp
dx

=
2

, = −
12c p

3

(14)

where q is the total mass flow rate, qc and qp are the Couette and
poiseuille mass flow rate, respectively.

The dimensionless load carrying force can be obtained by integrat-
ing the local hydrodynamic pressure over contact area as follows:

∬W P X Y dXdY= ( , )
Ω (15)

The dimensionless average pressure is chosen to measure the load
carrying capacity of sliding bearings and evaluate the hydrodynamic
effect of the surface texture. In the present study it can be expressed as:

P W
A

=av (16)

where A stands for contact area.
The above dimensionless equations are discretized on a uniform

spatial grid and simultaneously solved on the basis of the finite
difference method. Fig. 2 presents a flowchart of the numerical
procedure for the simultaneous iterative solution of the hydrodynamic
lubrication problem and the elastic deformation. With the help of
working condition parameters and initial value of film thickness and
pressure, a first approximated hydrodynamic pressure is obtained by
the solution of the Reynolds equation; the obtained pressure is used for
the calculation of the elastic deformation, density and viscosity; after
that, the film thickness is renewed by incorporating the obtained elastic

Fig. 2. Flow chart of the calculation process.
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deformation and then returned to Reynolds equation; this iterative
process is repeated until a desired convergence of pressure is achieved.

After discretization of Reynolds equation, the Gauss-Seidel iteration
with successive over relaxation (SOR) is applied to the set of non-linear
algebraic equations, the converging condition is taken as follows:

P P β P P= + ( − )i j
k

i j
k

i j
k

i j
k

,
+1

, ,
+1

, (17)

where β is the relaxation factor and β=1.75 is chosen to obtain a fast
convergence,Pi j

k
, , Pi j

k
,
+1are the pressure values at iterative step k and k+1,

Pi j
k
,
+1 is the temporary values at step k+1.
At the same time, the V-cycle style of multigrid method is used to

accelerate the SOR iteration and improve the numerical stability. Fig. 3
shows the schematic diagram of V-cycle multigrid with four levels
applied in this study. The top level is meshed by the finest grid of
169×169 nodes whereas bottom level has the coarsest grid of 22×22
nodes, intermediate levels are meshed by grid nodes of 85×85 and
43×43, respectively. The downward portion of the V-cycle presents the
restriction process and the upward portion presents the prolongation
process, with restriction operator and prolongation operator attached
to corresponding side. N0, N1 and N2 represent the iterations of SOR
in current mesh layers, they are respectively assigned to the values of
15, 2 and 1 in present study. More details and theory about multigrid
method is presented in [33,34].

The V-cycle process is repeated until the following convergence
criteria reached:
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where Pi j
n
, , Pi j

n
,

+1are the pressure values from previous and current V-
cycle iteration, respectively. Err is the error tolerance, taken as
1.0×10−5 here.

The Boussinesq's integral Eq. (6) is solved by an improved
numerical technique for computing surface elastic deformation pro-
posed by Wen et al. [35] Through this method, the deformation of
every node can be expressed as a linear combination of the nodal
pressures whose coefficients can be combined into a deformation
matrix just as follows:

∑ ∑δ
πE

D p= 2
′kl

i j
ij
kl

ij
(19)

where δkl is nodal elastic deformation, Dij
kl is the deformation matrix

which only dependent on the geometric factors of the grids, therefore
all the values of must be completely computed only once and the elastic
deformation can be calculated repeatedly by only applying the Eq. (19).
For more detail on the calculation of the deformation matrix, the
reader is referred to reference [35].

The focus of our work is the effect of elastic deformation, which is
also the major contribution of our work. In order for the time-saving
steady computational program and simplicity of implementation, the
numerical simulation employs Reynolds cavitation boundary condition
which is not mass conserving. The boundary conditions for discrete
Reynolds equation and the Reynolds boundary condition for the
cavitation in dimensionless form are as follows:

Ambient pressure at the inlet, outlet and both sides of the textured
sliding plane bearing:
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The pressure in cavitation regions is set value of P0 (atmospheric
pressure) according to Reynolds cavitation condition:
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where (X0,Y0) presents the rupture location of hydrodynamic lubricat-

ing film. In order to determine the cavitation boundary, the nodal
pressure is set to 1 if its value of pressure is less than 1 during the
iteration process.

3. Results and discussions

All results of the indexes that evaluate the lubrication properties in
present study are calculated from the center square cell of sides L×L
(shown by the dashed line in Fig. 1a) in order to mitigate the influence
of boundary condition. The indexes mainly include dimensionless
average pressure Pav, average deformation δav and minimum film
thickness hmin.

Some basic fixed parameters used in present study are listed in
Table 1. Paraffinic oil plays the role of lubricant. Other parameters such
as initial film thickness (h0), area density (Sa), ratio of dimple depth to
dimple diameter (λ=hp/(2×rp)) and sliding velocity (U) are varied
during the investigation.

3.1. Dimensionless average pressure Pav

Fig. 4 shows the effect of initial film thickness h0 on the values of
dimensionless average pressure Pav. For both the rigid solution and
elastohydrodynamic (EHD) solution, the values of dimensionless
average pressure decrease with the growth of initial film thickness
and tend to become stable until h0≥2.5 µm. However, the decrease of
dimensionless average pressure calculated from the rigid solution is
much more sharp than that of EHD solution, especially in thin film
hydrodynamic lubrication (h0 < 1 µm). As the initial film thickness
decreases, the difference in dimensionless average pressure between
the rigid solution and EHD solution becomes increasingly significant,
for instance, the value of Pav obtained from the rigid solution reaches
the value of 26.58 at h0=0.1 µm, outperforming that of the UHMWPE
under EHD solution by a factor of 15.8. At the same time, the figure
also presents the effect of the surface's elastic modulus on dimension-
less average pressure through comparing the result of UHMWPE and
PE (Poly Ethylene). The value of Pav obtained from the rigid solution
outperform that of the PE under EHD solution by a factor of 45.8 at
h0=0.1 µm, the lower the elastic modulus of the surface, the smaller the
value of the dimensionless average pressure.

As show in Fig. 4, the dimensionless average pressure Pav of the PE
under EHD solution does not vary significantly with the increase of
initial film thickness. Consequently, the EHD solutions in the following
study are all conducted for the tribo-contact between UHMWPE and
steel.

Fig. 5 shows the dimensionless average pressure Pav for various
sliding velocity U at thin film thickness h0=0.1 µm. With the growth of
sliding velocity, the dimensionless average pressure for EHD solution
has a trend of slow increase while that value for rigid solution
proportionately increases in a high rate, which results in the expanding
differences of the dimensionless average pressure between the two
different solutions.

Fig. 6 describes the dimensionless average pressure Pav for various
area density Sa at thin film thickness h0=0.1 µm. It can be seen that the

Fig. 3. Schematic diagram of V-cycle multigrid with four levels.
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dimensionless average pressure for rigid solution remains greater than
that for EHD solution during the change of the area density. For rigid
solution, the change trend firstly increase and then descend with the
increasing of the area density; dimensionless average pressure reaches
its peak point at area density Sa=30%. For EHD solution, the
dimensionless average pressure increases slightly with the growth of
the area density within the range of 10–30% and then tend to remain
stable.

Fig. 7 presents the effect of initial film thickness h0 on the optimal
area density Sa (circled by the dashed line) for rigid and EHD solution.
The change of dimensionless average pressure Pav with area density Sa
becomes increasingly remarkable as the initial film thickness h0

decreases. Meanwhile, dimensionless average pressure Pav reach its
peaks under different area density Sa. For EHD solution (see Fig. 7(b)),
when h0≤0.5 µm, the maximum Pav occurs at Sa=50%, in the range of
h0=0.5–1 µm, the maximum Pav happens at Sa=40%, while for h0 >
1 µm, the maximum Pav is obtained at Sa=20%. While for rigid
solution (see Fig. 7(a)), the maximum Pav all gain at Sa=10% except
that when h0=0.1 µm, which maximum acquires at Sa=30%.

Fig. 8 presents the effect of the ratio of dimple depth to dimple
diameter λ on dimensionless average pressure Pav when either the
dimple depth or its diameter is varied. As shown clearly by the graph,
in the case of EHD solution, the dimensionless average pressure
increases slightly with the growth of the ratio λ, whereas the opposite
tendency of decreasing dramatically is displayed for rigid solution.

The finding to be emphasized most in Figs. 4–8 is that elastic
deformation can result in a drastic reduction in the load carrying
capacity of textured sliding bearings. This can be explained in two ways
according to Yagi's analysis in previous studies [26,27]. On one hand,
the elastic deformation diminishes the step film shape in the con-
vergent part of the textures, especially the bottom of the textures
become divergent wedges, circled by the dashed line and show in Fig. 9.
On the other hand, the Poiseuille flow rate is proportional to the third
power of the film thickness film through the magnitude of ρh η/3

according to Eq. (14), elastic deformation makes the resistance to the
Poiseuille flow reduce significantly because of the overall increase in
film thickness compared with the Rigid solution, just as show in Fig. 9.

It can be seen clearly that the emergence of elastic deformation
leads the load carrying capacity of textured sliding bearings to become
insensitive to the texture parameters (Figs. 6 and 8) and operation
condition (Fig. 5). Meanwhile, the appearance of the elastic deforma-
tion is also found to change the optimal values of the area density Sa
and the ratio of dimple depth to its diameter λ compared with the Rigid
solutions (Figs. 6–8).

It should be noticed in Fig. 8 that the dimensionless average
pressure Pav changes in the opposite trend with the increase of dimple
depth over diameter ratio for the Rigid and EHD solutions no matter
when either the dimple depth or its diameter is varied. In the Rigid
solution, the dimensionless average pressure Pav decreases dramati-
cally with the increase of dimple depth over diameter ratio, which is in
good agreement with those results obtained by Etsion [36]. In the EHD
solution, deep dimple maybe good for the retention of film shape in the
convergent part of the textures after elastic deformation, so that deep
dimple is more effective for the pressure generation when taking elastic
deformation into consideration.

3.2. Average elastic deformation δav

As showed above, elastic deformation of the soft textured surface

Table 1
Basic parameters.

Item Value

Elastic modulus E 0.85 GPa (UHMWPE)
0.172 GPa (PE (Poly Ethylene))
210 GPa (steel)

Poisson's ratio ν 0.46 (UHMWPE)
0.439 (PE (Poly Ethylene))
0.3 (steel)

Radius of dimple rp 50 µm
Viscosity of lubricant η0 0.061 Pa s
Density of lubricant ρ0 900 kg/m3

Pressure-viscosity coefficient α 2×10−8 m2 N−1

Fig. 4. Effect of initial film thickness h0 on the dimensionless average pressure Pav at
Sa=20%, λ=1% and U=1.2 m/s.

Fig. 5. Effect of the sliding velocity U on the dimensionless average pressure Pav at
Sa=10%, h0=0.1 µm and λ=1%.

Fig. 6. Effect of area density Sa on the dimensionless average pressure Pav at λ=1%,
h0=0.1 µm and U=1.2 m/s.
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has a significant influence on dimensionless pressure Pav, it is
necessary to study the deformational degree described by average
elastic deformation δav, which is the mean value of deflection in the
center square cell.

Fig. 10 shows the average elastic deformation δav of EHD solution
for various initial film thickness h0 at λ=1% and U=1.2 m/s. The
average elastic deformation δav increases dramatically as initial film
thickness h0 decreases and reaches a value of about 0.85 µm at
h0=0.1 µm. The values of average deformation δav become greater
than the initial film thickness h0 while the thin film lubrication h0 is
less than 0.5 µm.

Fig. 11(a) and (b) respectively presents the values of average elastic
deformation δav for various area density Sa and ratio of dimple depth
to diameter λ at thin film thickness h0=0.3 µm. The effect of area

density Sa on average elastic deformation δav presents the parabolic
changing tendency and reaches its maximum values near Sa=20%, just
as shown in Fig. 11(a). The average elastic deformation first increases
moderately and then keeps constant value with the increase of the ratio
of dimple depth to its diameter λ, as shown in Fig. 11(b).

The pressure produced in lubricant film is transmitted to the tribo-
contacting surfaces, resulting in elastic deformation of the soft textured
surface. The relationship between the elastic deformation and lubricant
pressure is reflected in Eq. (6). Consequently, the variation tendencies
of average elastic deformation along with texture parameters are
roughly coincident with that of dimensionless average pressure in the
EHD solution. Those can be confirmed easily through the comparisons
between Figs. 4 and 10, Figs. 7(b) and 11(a), Figs. 8 and 11(b),
respectively.

Fig. 7. Effect of initial film thickness h0 on optimal area density Sa at λ=1% and U=1.2 m/s.

Fig. 8. Effect of the ratio of dimple depth to dimple diameter on the dimensionless
average pressure Pav at Sa=20%, h0=0.1 µm and U=1.2 m/s.

Fig. 9. Distribution of dimensionless film thickness along the x coordinate axis.

Fig. 10. Effect of the initial film thickness h0 on the average elastic deformation δav for
various Sa at λ=1% and U=1.2 m/s.
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3.3. Minimum film thickness hmin

Since the elastic deformation of surface directly affects the lubricant
film thickness, the minimum lubricating oil film thickness including the
surface elastic deformation, hmin, are obtained from the center square
cell of sides L×L (shown by the dashed line in Fig. 1a).

Fig. 12 shows the values of minimum film thickness hmin for
various initial film thickness h0 at Sa=10%, λ=1% and U=1.2 m/s. The
minimum film thickness hmin for EHD solution reaches as high as
0.81 µm at h0=0.1 µm, outperforming that values of the rigid solution
by a factor of 7. With the increase of initial film thickness, the
distinction in minimum film thickness between EHD solution and
rigid solution becomes more and more subtle. Elastic deformation of
the textured surface helps to increase the film thickness. The variation
trend of minimum film thickness for EHD solution is similar to that
obtained by Yagi [27], and it can be inferred that the elastic deforma-
tion of the surface becomes the major component of the film thickness
h in the case of thin film lubricant.

Fig. 13(a) and (b) respectively presents the values of minimum film
thickness hmin for various area density Sa and ratio λ of the surface
texture. Just as demonstrated in Fig. 12, the elastic deformation of the
surface becomes the major component of the film thickness h for EHD
solution in the case of thin initial film lubrication. Consequently, the
variation tendency of the minimum film thickness hmin over area
density Sa and ratio λ display highly similarity to that of average elastic
deformation δav (see Fig. 11(a) and (b) respectively).

3.4. Distribution of dimensionless pressure and elastic deformation

Fig. 14 shows the pressure distribution at the sliding bearings
interface and the corresponding elastic deformation distribution at the
textured UHMWPE surface. The black circles in the figure represent
the position of dimples. It demonstrates a gradual pressure buildup
along the lubricant flow direction which is from left to right in pictures,
reaching a maximum at the dimple rear end. Elastic deformation of the
textured surface mainly occurs across the zone of pressure buildup and
reaches a maximum around the rightmost rim of dimple.

Fig. 15 depicts the distorted textured surface of the center square
cell at h0=0.1 µm, Sa=20%, λ=1% and U=1.2 m/s. The lubricant flows
along X-coordinate axis. The original position of the top surface and
dimple bottom locate at Z=0 and Z=−1 µm, respectively. Right picture
is the section cuts of trimetric view. It can be seen that elastic
deformation occurs not only on the surface but also at the bottom of
dimple. It is this elastic deformation that produces the difference in
pressure distribution and load carrying capacity. The initial flat
surfaces start to sink under the action of lubricant pressure and the

most serious sunk part is at the dimple rear end, which corresponds
with the distribution of elastic deformation showed in Fig. 14.

Fig. 16 presents the effect of initial film thickness h0 on the
dimensionless pressure and corresponding elastic deformation distri-
bution at Sa=20%, λ=1%, and U=1.2 m/s. The dimensionless pressure,
as well as elastic deformation, has similar distribution for various
initial lubricant film thickness h0. Meanwhile, the pressure levels and
elastic deformation degrees decrease moderately as initial film thick-
ness h0 increases.

Fig. 17 describes the distributions of dimensionless pressure and
elastic deformation for various depth-diameter ratio λ at h0=0.1 µm,
Sa=20%, and U=1.2 m/s. When dimple is shallow (λ=0.2%), low
pressure region spreads out through the whole calculating cell, and
high pressure compress in a small piece of the convergent region
around the right rim of dimple (see Fig. 16(a)). As dimples become
increasingly deep, the region of pressure build-up increases by
extending all around, and low pressure area changes in opposite
directions at the same time (see Fig. 16(b) and (c)). The distribution
shapes of elastic deformation are similar for various dimple depth-
diameter ration λ, while the level of elastic deformation rises as depth-
diameter ratio λ increases.

Fig. 18 displays the effect of dimple area density Sa on the
distribution of dimensionless pressure and elastic deformation at
h0=0.1 µm, λ=1%, and U=1.2 m/s. Just as shown in the figure, the
whole quadrate cell tends to be symmetrically divided by the areas of
low and high lubricant pressure as the growth of area density Sa. At the
same time, the elastic deformation becomes smaller at higher area

Fig. 11. Effect of the parameters of the surface texture on the average elastic deformation δav at thin film thickness h0=0.3 µm and U=1.2 m/s.

Fig. 12. Effect of the initial film thickness h0 on the minimum film thickness hmin at
Sa=10%, λ=1% and U=1.2 m/s.
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density (see Fig. 18(f)).
It can be seen from Figs. 16–18 that the distribution of the

dimensionless pressure and elastic deformation are basically echoed
by each other and the max elastic deformations are all obtained in the
zones where dimensionless pressures reach the peak. In addition, the
effect of initial film thickness h0 on the max values of dimensionless
pressure and elastic deformation are well corresponding to that effect
on the dimensionless average pressure Pav and average elastic
deformation δav, respectively. This can be confirmed through compar-
ing Figs. 4, 10 and 16. The same is true for the effect of the dimple
depth-diameter ratio λ, however, the effect of area density Sa does not
possess this characteristic.

The paper is numerically focused on the influence of elastic
deformation on the load carrying capacity of fully textured parallel
sliding bearings under hydrodynamic lubrication. It was found that
elastic deformation could severely impact the load carrying capacity. In
order to have more precise results, a more efficient mass-conserving
approach suitable for the EHD solution is needed in future study. In
addition, the conclusions drawn from this study may be limited to the
full texture pattern. Dobrica [37] and Woloszynski's [38] research
groups have respectively demonstrated that the spatial arrangement of
dimples could severely influence the hydrodynamic effect and inertia
effect of the textured sliding bearings. The effect of the spatial
arrangement of dimples should be included in future study.

Fig. 13. Effect of the parameters of the surface texture on the minimum film thickness hmin.

Fig. 14. Dimensionless pressure distribution and elastic deformation distribution of the textured surface at h0=0.1 µm, Sa=20%, λ=1% and U=1.2 m/s.

Fig. 15. The distorted textured surface of the center square cell at h0=0.1 µm, Sa=20%, λ=1% and U=1.2 m/s.
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Fig. 16. Dimensionless pressure and elastic deformation distribution for various initial film thickness at Sa=20%, λ=1% and U=1.2 m/s.

Fig. 17. Dimensionless pressure and elastic deformation distribution for various dimple depth at h0=0.1 µm, Sa=20% and U=1.2 m/s.
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4. Conclusions

A two-dimensional elastohydrodynamic numerical simulation is
conducted for surface textured sliding bearings in thin film hydro-
dynamic lubrication, and the small elastic deformation of textured
surface is investigated in detail. The following are the key conclusions
drawn from the present study:

1. The small elastic deformation in thin film hydrodynamic lubrication
have a significant negative influence on the maximum value and
distribution of the film pressure, but when the initial film thickness
h0≥2 µm (Fig. 4), the effect of elastic deformation on lubrication
property can be ignored.

2. In thin film hydrodynamic lubrication, the elastic deformation of the
surface leads to the decrease of pressure peak and the increase of
film thickness (Fig. 12), and results in that load carrying capacity
becomes insensitive to area density Sa (Fig. 6), dimple depth-
diameter ratio λ (Fig. 8) and sliding velocity U (Fig. 5) compared
with the rigid solution.

3. Elastic deformation reprioritizes the texture parameters that influ-
ence the load carrying capacity of sliding bearings. For rigid solution,
load carrying capacity is most easily affected by dimple depth over
diameter ratio λ, and then texture area density Sa. While for EHD
solution, the reverse is true, texture area density Sa becomes the
most influential parameter (Figs. 6 and 8).

4. Elastic deformation also changes the optimal textured parameters
for sliding bearings in term of load carrying capacity (Figs. 7 and 8).
For EHD solution, optimal area density Sa for surface texture on
UHMWPE varies with the initial film thickness h0, when h0≤0.5 µm,
optimal value of Sa is 50%, in the range of h0=0.5–1 µm, optimal
value of Sa is 40%, when for h0 > 1 µm, optimal value of Sa is 20%.
But for rigid solution, the optimal value of Sa is 10% in most cases
except when h0=0.1 µm, in which the optimal value of Sa is 30%,
under the simulation conditions of this study. As far as dimple

depth-diameter ratio λ, for EHD solution, a higher value is better; for
rigid solution, lower is better.
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