
Contents lists available at ScienceDirect

Tribology International

journal homepage: www.elsevier.com/locate/triboint

Multi-objective optimization on dimple shapes for gas face seals

Xiuying Wanga, Liping Shia,b, Qinwen Daia, Wei Huanga, Xiaolei Wanga,∗

a College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
b School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China

A R T I C L E I N F O

Keywords:
Surface texture
Face seals
Shape optimization
Multi-objective optimization

A B S T R A C T

The shape of surface texture has a significant effect on the performance of face seals. Many studies found that the
textures designed for improving load carrying capacity tend to increase leakage at the same time. Therefore, a
multi-objective optimization approach is presented to optimize the dimple shapes with freedom edges. It has
been found the dimples with asymmetric “V” shape offer better performance in terms of load carrying capacity
and leakage. Moreover, the optimal shapes are compared with four kinds of optimal regular shapes under dif-
ferent rotating speeds. The results show that the superiority of shape optimization is more obvious in conditions
with high speed.

1. Introduction

There is an increasing demand for reliable and durable face seals
with low leakage and low friction under high speed, high temperature,
and complex working conditions. Surface texturing has been proven to
be an effective means to improve the tribological performance of sliding
surfaces because of the hydrodynamic effect under full or mixed lu-
brication and lubricant reservoir effect under staved lubrication con-
ditions [1–5].

The patterns of grooves and dimples are common types of surface
texture for face seals [1–15]. They are typical representatives of con-
nected texture and disconnected texture, respectively. Grooves such as
spiral grooves [10–13] and T-shape grooves [9] have been widely used
in face seals due to the pumping effect and hydrodynamic effect.
Dimples were also proven to reduce friction or improve load carrying
capacity under different conditions [3–7,14–18], meanwhile, they were
expected to obtain a better hydrodynamic effect due to the dis-
connected structure [7,15]. Nakano et al. [7] found that cast iron sur-
faces with dimples had lower friction than the surfaces with grooves or
meshes under lubricated conditions. Shi et al. [14] found that elliptical
dimples with a high area density can obtain a higher load carrying
capacity and higher gas film stiffness than grooves for gas lubrication.
With further research, dimple shape has become a hot factor in the
optimization of surface textures. Lu and Khonsari [2] reported that
bushing with elliptical dimples has a lower friction coefficient than that
with circular dimples under mixed lubrication. Uddin et al. [19] found
that square shape dimples with a single wedge-bottom profile offered
better tribological performance than triangular, chevron, circular and

elliptical shapes. In view of the above studies, a conclusion can be
drawn that the dimple shape is an essential factor to improve the tri-
bological performance. Therefore, beyond the above regular shapes, are
there any other shapes of dimples which can provide a better impact on
the performance of sliding surface? Shen and Khonsari [20,21] con-
ducted numerical optimization for complex dimple shapes using a se-
quential quadratic programming (SQP) algorithm. The optimal shape
which can produce the maximum load carrying capacity was obtained
by changing the design variables from an arbitrary shape. This work
provides a possibility for further optimization of texture shapes.

Leakage is another important factor for gas face seals. However, it is
difficult to improve the load carrying capacity or opening force and
simultaneously reduce the leakage through surface texturing [8,10,22].
The clearance of seal rings increases with the increasing opening force,
which leads to an undesirable increase of leakage [8]. In order to ease
the case, the seal with double-row spiral grooves was presented where
one row can pump the leaked medium back to the sealed space. But
such a seal tends to have a complicated structure, needs larger in-
stallation space and can only be applied under low pressure differences
[8]. Moreover, the load carrying capacity and the leakage rate were
analyzed independently in most of the studies. It is difficult to obtain a
better combination performance objectively by a single objective ana-
lysis.

This study aims to provide a multi-objective optimization approach
specially for conflicting objectives i.e., load carrying capacity and
leakage rate, to optimize the shape of dimples on gas face seals. The
models of dimples and multi-objective optimization problem are es-
tablished where the dimples have an arbitrary shape on a certain
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constraint. Then, the optimal dimple shapes and the Pareto-optimal sets
are obtained using the elitist non-dominated sorting genetic algorithm
(NSGA-II). Furthermore, the optimal shapes are compared with the
optimal regular shapes, including circle, ellipse, square and triangle,
under different rotating speeds.

2. Optimization method

2.1. Physical model and governing equation

The face seal is composed of two sealing rings. Fig. 1 shows the
physical model, where rI and rO are the inner radius and outer radius of
the rings, respectively. The sealing faces are separated by a layer of gas
film with the thickness of h0. nr is the rotating speed, and hg is the depth
of dimples. In this study, 24 dimples are uniformly distributed on the
stationary ring face. A sector unit cell containing one dimple is con-
sidered as the computing domain, and δ is the angle of computational
domain.

In order to optimize the shape of the dimple from arbitrary geo-
metry, there are 2n control points for one dimple which is formed by
connecting the adjacent points. In this study, the shapes of dimples
include two types: type a and type b, as shown in Fig. 2. For type a, the
control points of n-ith and 2n-ith (i=0,1, …n-1) are located at the same
radius, and they are free in the circumferential direction under a certain
constraint which is shown in the multi-objective optimization model.
The coordinates of these points are shown in Table 1. Based on this
principle, 2n+2 design variables are required, and they are θ1, θ2,…θn,
θ1a, θ2a, …θna, l, L. For type b, the regularity is similar to that of type a,
but the points of n-ith and 2n-ith (i=0,1, …n-1) are located at the same
angle and they are free in the radial direction.

The number of design variables m=2n+2 is an important factor
for the computing accuracy and efficiency. Generally, the more the
design variables, the smoother the edges of optimal shapes, however,
the longer the computing time. Take type a as an example, the number
of design variables m is studied in this study. It is found that when m is
increased from 8 to 16, the optimal shapes have similar geometries and
the edges become smoother and smoother, meanwhile, the computing
times increase at an increasing rate. For m=14, the optimized shapes
have relatively smooth edges, and the computing time is 247 h which is
32% smaller than the computing time (367 h) of m=16. Based on the
computing time and shape accuracy, m=14 is chosen in this study.

The two-dimensional steady-state Reynolds equation in the polar
coordinates is employed to analyze the gas film pressure distribution p
(r,θ). The equation can be expressed as:
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where r and θ are the polar coordinates in the radial and circumfer-
ential directions, respectively; μ is the dynamic viscosity of gas, which is
assumed as a constant in this study; ρ is the gas density; p is the gas
pressure; h is the gas film thickness which is equal to h0+hg in the
dimple region and equal to h0 beyond the dimple region; and ω is the
angular velocity which is equal to 2πnr/60.

Reynolds number, defined as =Re ρvh
μ where v is the peripheral

velocity of the seal face, is a dimensionless number that characterizes
the state of fluid. Generally, the flow can be treated as laminar when
Re < 1000 [23]. In this study, an example with the rotating speed of
10000 rpm is mainly studied, where the maximum Re is not more than
350, so laminar flow is assumed in this model.

Nomenclature

h gas film thickness
Ft non-dominated front
h0 sealing clearance
M average molar mass of gas
hg groove depth
P0 initial population
l inner diameter of dimple region of type a
Pt population at Nth iteration
m number of design variables
Q leakage rate
nr rotating speed
Qt population obtained by crossover and mutation
p gas film pressure
R gas constant
pa atmospheric pressure
Rt union of Pt and Qt

r coordinate in the radial direction

T thermodynamic temperature
rI inner diameter of sealing ring
ω angular velocity
rO outer diameter of sealing ring
W load carrying capacity
α small angle of dimple region of type b
R dimensionless coordinate in the radial direction
β large angle of dimple region of type b
ϑ dimensionless coordinate in the circumferential direction
Θ coordinate in the circumferential direction
H dimensionless gas film thickness
γ gas pressure to density ratio
P dimensionless gas film pressure
δ angle of computing domain
Q dimensionless leakage rate
ρ gas density
W dimensionless load carrying capacity
μ dynamic viscosity of gas
NSGA-II elitist non-dominated sorting genetic algorithm

Fig. 1. Physical model of the face seal.
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It is assumed that the sealing gas is of uniform temperature, because
the friction of non-contact gas seals is quite small and the temperature
rises slowly. Moreover, it is considered as an ideal gas. The ideal gas
state equation is written as:

= =
p
ρ

RT
M

γ
(2)

where M is the average molar mass of gas, equal to 29 g/mol; R is the
gas constant, equal to 8.314 cm3MPa/mol·K; T is the absolute tem-
perature of the sealing system and is taken as 300 K in this study. The
ratio of p and ρ is defined as γ and will be used in the calculation of the
leakage rate.

The pressures at the outer radius and inner radius are set to pI and
pO, respectively, and the periodic boundary condition is applied in the
circumferential directions to account for the interaction between dim-
ples. The boundary condition is written as:
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The performance parameters, including load carrying capacity W
and leakage rate Q, are expressed as:

∫ ∫=W p r θ rdrdθ( , )
δ

r

r

0 I

O

(4)

∫ ⎜ ⎟= − ⎛
⎝

∂
∂

⎞
⎠ =

Q
prh

μγ
p
r

dθ
12

δ

r r
0

3

I (5)

The load carrying capacity W is the integral of the gas film pressure
across the entire computing domain. The leakage rate Q is the flow rate
in the radial direction and it follows the flow continuity principle. It
could be calculated no matter which radius is chosen. So the inner ra-
dius is adopted in the following evaluation.

The equations and performance parameters are nondimensionalized
based on the dimensionless terms:
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The dimensionless Reynolds equation can be expressed as:
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2 is the compressibility number.

The successive over relaxation (SOR) method is utilized to solve the
dimensionless Reynolds equations. The dimensionless performance
parameters are obtained according to Eq. (4), Eq. (5) and Eq. (6).

2.2. Multi-objective optimization model

For a multi-objective optimization problem, usually there is not a
single optimal solution but an optimal set called as Pareto-optimal set.
The element in Pareto-optimal set is called as Pareto-optimal solution
which means that one objective is the best when other objectives are
fixed. In other words, it is impossible to make one of the objectives
better than the optimal solution without destroying any other objec-
tives. The multi-objective optimization model can be expressed as:

= ⋯f x f x f x f x s t xmin ( ) [ ( ), ( ), , ( )] subject to ( . .)
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m1 2

(8)

where f1(x), f2(x), …, fm(x) are the objective functions, and x is a vector
formed by independent variables.

In this study, the dimensionless load carrying capacity W and the
dimensionless leakage rate Q are the objectives, and the dimensionless
design variables related to the dimple shapes are the independent
variables. Because the minimum values of objective functions are the
goal of the multi-objective optimization, − W is taken as an objective
according to the practical meaning of W . The model of multi-objective
optimization for dimples of type a is expressed as:
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where xa is a vector formed by the dimensionless parameters of dimples
of type a.

Similarly, the model of multi-objective optimization for dimples of
type b is expressed as:

Fig. 2. Geometrical models of dimples in polar coordinate.

Table 1
Coordinates of the points in the physical model of dimples.

Points i (i=1,2 … …n) j (j= n+1,n+2 … …2n)

Coordinates Type a (dr=(L-l)/
(n-1))

(l + dr×(i-1), θi) (l + dr×(j-n-1), θj-
n+θaj-n)

Type b (dθ=(β-α)/
(n-1))

(ri, α+dθ×(i-1)) (rj-n + rbj-n, α+dθ×(j-n-
1))
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I I , and xb is a vector formed by
the dimensionless parameters of dimples of type b.

The multi-objective optimization problem is solved using the elitist
non-dominated sorting genetic algorithm (NSGA-II). The algorithm
brings forward a fast non-dominate sorting approach; and its computing
complexity is reduced greatly [24,25]. Fig. 3 presents a flowchart of
NSGA-II. The optimal results are obtained through repeated iteration.
Staring from a random population P0, a new population Qt is obtained
by genetic manipulation for the population Pt, then, a non-dominated
front Ft is formed by sorting and selecting for the union set Rt of Pt and
Qt. The population Pt+1 is formed by individuals in Rt corresponding to
the top N individuals in Ft, where N is the population size. The work
repeats until the termination condition that the population distance of
adjacent iterations is less than 10−5 is satisfied.

The values of geometric parameters and condition parameters used
in this study are shown in Table 2.

3. Results and discussion

3.1. Shape optimization results

The multi-objective optimization problem is solved using NSGA-II
according to the flowchart in Fig. 3. The Pareto-optimal sets and op-
timal objectives for type a and type b are obtained, respectively. The
number of solutions in Pareto-optimal set is related to the population
size and Pareto fraction. Too many solutions are unnecessary because
they are continuous and the adjacent solutions have high similarities.

So it is set to 7 in order to show the optimal shapes clearly.
Fig. 4 shows the solutions of the multi-objective optimization for

type a and type b. The horizontal axis is the dimensionless leakage rate
and the vertical axis is the dimensionless load carrying capacity. Take
type a as an example, a curve is formed by connecting the optimal
points, which divides the area into two parts. The optimal solutions are
the boundary of the shadow area. For all dimple shapes of type a except
optimal shapes, their dimensionless load carrying capacities and di-
mensionless leakage rates will fall into the black shadow area. Similar
conclusion can be drawn for type b. As shown in Fig. 4, the growth rate
of optimal dimensionless load carrying capacity is getting smaller as the
optimal dimensionless leakage rate increases linearly. In other words,
the optimal dimensionless leakage rate will increase sharply when the
optimal dimensionless load carrying capacity increases slightly. That is
to say, blindly pursuing the maximum load carrying capacity is not
appropriate in the design of dimples for gas face seals because drastic
rises may occur in the leakage rate.

As can also be observed in Fig. 4, the optimal dimensionless load
carrying capacity of type b is smaller than that of type a under the same
dimensionless leakage rate for all solutions, meanwhile, the optimal
dimensionless leakage rate of type b is larger than that of type a under
the same dimensionless load carrying capacity. For example, the op-
timal dimensionless load carrying capacity of type a is 2.52 when the
dimensionless leakage rate is 57.9, higher than that of other type a with
the same dimensionless leakage rate. It is 2.18 for type b, which is
13.5% lower than that of type a. Similarly, the optimal dimensionless
leakage rate of type a can be as low as 46.8 when the dimensionless
load carrying capacity is 2.18, and it is 57.9 for type b, which is 23.7%
higher than that of type a. In view of this, the optimal shapes of type a
can provide a better combination performance than that of type b. The
reason may be that the freedom in the circumferential direction is
beneficial to produce a larger load carrying capacity or a lower leakageFig. 3. Flowchart of the NSGA-II.

Table 2
Geometric parameters and condition parameters.

Items Values

Inner radius of computing domain rI, mm 17.9
Outer radius of computing domain rO, mm 23.4
Angle of computing domain ω π/12
Depth of dimples hg, μm 10
Gap of two specimen h0, μm 10
Sealed gas dynamic viscosity μ, MPa⋅s 18.448× 10−12

Atmospheric pressure pa, MPa 0.101
Boundary pressure of inner side pI, MPa 0.202
Boundary pressure of outer side pO, MPa 0.101
Rotating speed nr, rpm 3000, 10000, 20000

Fig. 4. The optimal solutions of multi-objective optimization.
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rate, but it was constrained for the shape of type b.
Moreover, as can be seen in Fig. 4, the value spans of optimal ob-

jectives are wide. That is to say, the optimization results can provide a
reference for a variety of leakage or load carrying capacity require-
ments, meanwhile, the objectives span of type a is larger than that of
type b. For example, when the dimensionless leakage rate of 74.6 is
allowed, the optimal solutions of type b can't provide a more effective
reference for the design of dimples. The optimal shape of type a cor-
responding to the dimensionless load carrying capacity of 2.73 can be
selected. In this way, the dimples can satisfy the requirement of leakage
rate and can generate a load carrying capacity as large as possible at the
same time. Considering this view and the above analysis, the optimal
shapes of type a are better than those of type b.

Table 3 shows the optimal dimple shapes and the dimensionless
pressure distributions corresponding to the above solutions. The de-
tailed values of the design variables are shown in Appendix. As shown
in Table 3, the optimal shapes for type a have very similar geometries
with asymmetric “V” apart from the solution 1. The widths and areas of
edges near inner side are larger than those near outer side. As the so-
lution order increases, the widths and areas of edges near inner side
increase but the edges near outer side are almost same. It is hard to get
such special optimal shapes through imagination or subjective de-
signing. Numerical optimization may be the only way. As also can be
seen in Table 3, the optimal shapes for type b are constrained greatly in
the circumferential direction, their edges mainly show a jagged shape in
the radial direction. But the trend in the radial direction is not a very
effective factor according to the optimal solution in Fig. 4. In addition,
for type a and type b, all of the optimal dimples are located at the outer
side of sealing faces. The reason maybe that gas flows into the sealing
clearance from inner side driven by the high pressure at inner radius,
then the gas pressure decreases from inner to outer, and it is further
enhanced by the dimples near outer side.

Moreover, as shown in Table 3, the dimensionless pressure dis-
tributions between type a and type b are different. For type a, high
pressure is mainly generated at the end of wide edge, which is located
in the middle of the computational domain. However, there are obvious
breaks for the pressure distribution of optimal type b. In general, the
optimal shapes of type a have a more uniform pressure distribution than
those of type b, which may lead to a higher load carrying capacity.
Meanwhile, for most optimal shapes of type a, the dimple areas are

smaller than those of type b, which may lead to a lower leakage rate,
because the untextured area is a critical factor for the leakage. In ad-
dition, there are two flows including pressure flow and shear flow in the
computational domain for the optimal shape of type a, as shown in
Fig. 5. High pressure is also generated at the end of the narrow edge,
and the mediums will flow back to inner side driven by the pressure
difference. So the leakage rate will be reduced to some extent.

3.2. Comparison with optimal regular shapes

3.2.1. Regular shapes
The optimal dimple shapes of type a are compared with optimal

regular shapes including circle, ellipse, square and triangle. The design
variables are determined according to their features. Table 4 shows the
regular shapes and their design variables. Different constraints are ap-
plied to the design variables for different dimples to ensure that the
dimples do not exceed the computational domain. For all of these
dimples, their depths are equal to the dimple depths of type a. The
optimal solutions are obtained using the same multi-objective optimi-
zation method.

Table 3
Optimal shapes and dimensionless pressure distributions.

Fig. 5. Mechanism of optimal shape of type a.

Table 4
Models of regular shapes.

No. Description dimple shapes Design
variables

Number of design
variables

1 Circle αc, lc, rc 3

2 Ellipse αe1, le1, αe2, le2,
le

5

3 Square αs1, ls1, αs2, ls2 4

4 Triangle αt1, lt1, αt2, lt2,
αt3, lt3

6

X. Wang et al. Tribology International 123 (2018) 216–223

220



3.2.2. Optimal results for regular shapes
Fig. 6 shows optimal solutions of type a and regular shapes. Table 5

shows the corresponding optimal regular shapes and their dimension-
less pressure distributions. Similar to Fig. 4, the growth rate of optimal
dimensionless load carrying capacity is getting smaller as the optimal
dimensionless leakage rate increases. In addition, for all shapes except
optimal shapes, their dimensionless load carrying capacity and di-
mensionless leakage rate will fall below the optimal curves.

It can also be seen in Fig. 6 that the optimal dimensionless load
carrying capacities of regular shapes are smaller than those of type a
under the same leakage rate in most cases. That is to say, the optimal
shapes of type a can offer better performance in comparison with other
optimal regular shapes. For example, the optimal shape of type a has

the dimensionless load carrying capacities of 1.47 and 2.67 when the
dimensionless leakage rates are 30 and 70, which is 23.5% and 16.1%
higher than the lowest values of 1.19 and 2.30, respectively. Mean-
while, the optimal shape of square has the second largest optimal di-
mensionless load carrying capacity 2.44 when the dimensionless
leakage rate is 70, but it has the lowest optimal dimensionless load
carrying capacity 1.19 when the dimensionless leakage rate is 30.
Generally speaking, the optimal shape of type a is the most satisfactory
under both low and high leakage rate conditions, and the optimal
square shape can be the second choice under a high leakage rate con-
dition. Certainly, the optimal square shapes provide a slightly lower
load carrying capacity than the optimal shapes of type a under the same
leakage rate, but they have a lower design complexity.

The wide spans of optimal objectives mean that the optimization
results can provide references for a variety of leakage or load carrying
capacity requirements. In view of this, the optimal shapes of type a and
optimal square shapes are more favorable than other optimal shapes,
because they have larger spans.

As shown in Table 5, similar to the optimal shapes of type a, as the
solution order increases, the areas of optimal regular shapes are be-
coming larger in general, and the locations of dimples move to the
upstream and outer side. For the optimal square shapes, the increasing
length in the radial direction plays an important role in preventing
flow, improving film pressure and enlarging the leakage rate at the
same time. The decreasing length in the circumferential direction can
control the leakage rate to some extent. So the length-width ratio, de-
fined as the ratio of the length in the circumferential direction to the
length in the radial direction of the square dimple, is a sensitive factor
for the pressure distribution.

In summary, the optimal shapes of type a are the most satisfactory.
The optimal square shapes can be the second choice because of the
large span of optimal solutions and the simple structures.

Fig. 6. Optimization results for different dimple shapes.

Table 5
Optimal regular shapes and dimensionless pressure distributions.

Table 6
Optimal shapes of type a and dimensionless pressure distributions for nr=3000 rpm and nr=20000 rpm.
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3.2.3. Results under different rotating speeds
In order to verify if the rotating speed has obvious influence on the

optimal shapes, the same approach is carried out for a quite low speed
nr=3000 rpm and a quite high speed nr=20000 rpm under the same
laminar assumption, although the maximum Re is about 1675 for the
speed of 20000 rpm, and turbulence flow should be considered in real
case.

Table 6 shows the optimal dimple shapes of type a for
nr=3000 rpm and nr=20000 rpm. Although there are small differ-
ences between the same order solutions for different speeds, in general,
they are similar.

Fig. 7 shows the optimal solutions of different dimple shapes for
nr=3000 rpm and nr=20000 rpm. The optimal shape of type a shows
a higher dimensionless load carrying capacity than other optimal
shapes under the same dimensionless leakage rate for both low speed
and high speed. Similarly, it can get a lower dimensionless leakage rate
than other shapes under the same dimensionless load carrying capacity.
Meanwhile, the solution spans of optimal type a are larger than other
shapes, which means a broad guidance on different leakage or load
carrying capacity requirements. Moreover, as can be seen in Figs. 6 and
7, the differences of optimal solutions between optimal shape of type a
and other optimal shapes increase with the increasing rotating speed.
The advantage of optimal type a is more obvious at high rotating speed.

The specific samples show the effectiveness of the multi-objective
optimization for the dimple shape, and other working conditions can
also be analyzed using this method when the actual condition

parameters are specified.

4. Conclusions

In this study, a multi-objective optimization approach is presented
to optimize the dimple shape for gas face seals.

For any types of dimple shape, each optimal shape can get a highest
load carrying capacity under a given leakage rate or a lowest leakage
rate under a given load carrying capacity. The wide spans of solutions
mean the results can provide a reference for a variety of leakage or load
carrying capacity requirements.

The optimal shapes of asymmetric “V” always show a best impact on
the performance of gas face seals. The advantage of shape optimization
using multi-objective approach for gas face seals is more obvious at
high speed conditions.
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Appendix

Table A1
Detailed values of the optimal shapes of type a in Table 3

Solutions orders 1 2 3 4 5 6 7

θ1 0.25909 0.25559 0.25192 0.23943 0.22239 0.18404 0.17701
θ2 0.00159 0.00458 0.06449 0.15392 0.12496 0.12429 0.1204
θ3 0.00193 0.00318 0.01687 0.05402 0.10313 0.11217 0.11474
θ4 0.00083 0.12445 0.1197 0.11791 0.11008 0.11235 0.11432
θ5 0.25886 0.22637 0.20278 0.19645 0.21226 0.21676 0.23036
θ6 0.00158 0.00306 0.0138 0.02404 0.02054 0.02008 0.01266
θ1a 0.00101 0.00147 0.00466 0.011 0.01633 0.0177 0.02308
θ2a 0.00099 0.00721 0.01778 0.07536 0.12821 0.13002 0.1382
θ3a 0.2361 0.24411 0.24036 0.19893 0.15361 0.15056 0.14794
θ4a 0.0033 0.11499 0.12739 0.13742 0.14145 0.14516 0.14768

Fig. 7. Optimal solutions of different dimple shapes: (a) nr=3000 rpm, (b) nr=20000.
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θ5a 0.00124 0.01964 0.04189 0.06085 0.03942 0.03919 0.02787
θ6a 0.13152 0.23424 0.23526 0.22722 0.23294 0.23543 0.23637
l/rI 1.00469 1.12325 1.14479 1.13878 1.13001 1.10213 1.08318
L/rI 1.17265 1.27475 1.27935 1.2817 1.2835 1.28419 1.28461

Table A2
Detailed values of the optimal shapes of type b in Table 3

Solution orders 1 2 3 4 5 6 7

r1 1.12845 1.12189 1.11975 1.10649 1.08297 1.07185 1.05829
r2 1.13475 1.14054 1.13789 1.13950 1.12098 1.11425 1.08403
r3 1.12169 1.12526 1.11519 1.13936 1.08934 1.06188 1.03061
r4 1.12183 1.12753 1.11779 1.14132 1.11337 1.10803 1.08977
r5 1.11898 1.11634 1.12299 1.16799 1.13916 1.13477 1.13377
r6 1.11198 1.07776 1.07559 1.15367 1.13768 1.09672 1.08345
r1 0.15832 0.16872 0.17237 0.19568 0.21298 0.21882 0.22547
r2 0.17237 0.16164 0.15569 0.16070 0.16944 0.18174 0.20927
r3 0.13401 0.10485 0.09326 0.05913 0.02294 0.02272 0.02267
r4 0.17471 0.16803 0.16546 0.16591 0.16960 0.17808 0.17517
r5 0.15231 0.12844 0.05070 0.09884 0.13852 0.15376 0.15622
r6 0.16883 0.13301 0.11488 0.13268 0.13934 0.17770 0.18006
α 0.11970 0.01260 0.01300 0.01041 0.01286 0.01480 0.01495
β 0.26018 0.25945 0.25893 0.23485 0.21948 0.20462 0.20174
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